Welcome to the TS3989EN Troubleshooting Manual. We make every effort to keep our service information current and accurate. Because of the time lag involved with writing and printing processes, the transmission TCM may report a code that has not yet been added to this document. If you encounter a code that is not yet in this publication, please call the Allison Transmission Technical Assistance Center at 1-800-252-5283.

Go to the Table of Contents
3000 Vocational Models

- **3000 HS**: 3500 RDS
- **3000 RDS**: 3500 EVS
- **3000 EVS**: 3500 EVS
- **3000 MH**:
- **3000 PTS**:
- **3000 TRV**:
- **3200 SP**: 3500 SP, 3700 SP
- **3200 TRV**:

4000 Vocational Models

- **4000 EVS**: 4500 EVS, 4700 EVS, 4800 EVS
- **4000 HS**: 4500 HS, 4700 RDS
- **4000 MH**: 4500 RDS
- **4000 RDS**: 4500 SP
- **4000 TRV**: 4500 TRV
- **4500 EVS**: B 500
- **4500 HS**: B 500P
- **4500 RDS**: B 500R
- **4500 SP**: B 500PR
- **4500 TRV**: T 425, T 450
This manual provides troubleshooting information for the 3000 and 4000 Product Families Transmissions. Service Manuals SM4013EN and SM4014EN, plus Parts Catalogs PC2150EN and PC2456EN may be used in conjunction with this manual.

This manual includes:

- Description of the 3000 and 4000 Product Families Allison 4TH Generation Electronic Control system.
- Description of the electronic control system components.
- Description of diagnostic codes, system responses to faults, and troubleshooting.
- Wire, terminal, and connector repair information.

Specific instructions for using many of the available or required service tools and equipment are not included in this manual. The service tool manufacturer will furnish instructions for using the tools or equipment.

Additional information may be published from time to time in Service Information Letters (SIL) and will be included in future revisions of this and other manuals. Please use these SILs to obtain up-to-date information concerning Allison Transmission products.

This publication is revised periodically to include improvements, new models, special tools, and procedures. A revision is indicated by a new date on the title page and in the lower left corner of the rear cover. Check with your Allison Transmission service outlet for the currently applicable publication. Additional copies of this publication may be purchased from authorized Allison Transmission service outlets. Look in your telephone directory under the heading of Transmissions — Truck, Tractor, etc.

Take time to review the Table of Contents and the manual. Reviewing the Table of Contents will aid you in quickly locating information.

NOTE: Allison Transmission is providing for service of wiring harnesses and wiring harness components as follows:

- Repair parts for the internal wiring harness and for wiring harness components attached to the shift selector will be available through the Allison Transmission Parts Distribution Center (PDC). Use the P/N from your appropriate parts catalog or from Appendix E in this manual. Allison Transmission (AT) is responsible for warranty on these parts.
- Repair parts for the external harnesses and external harness components must be obtained from St. Clair Technologies Inc. (SCTI). SCTI provides parts to any Allison customer or OEM and is responsible for warranty on these parts. SCTI recognizes AT, manufacturers, and SCTI part numbers. SCTI provides a technical HELPLINE at 519-627-1673 (Wallaceburg). SCTI will have parts catalogs available. The SCTI addresses and phone numbers for parts outlets are:

 St. Clair Technologies, Inc.
 920 Old Glass Road
 Wallaceburg, Ontario, N8A 4L8
 Phone: 519-627-1673
 Fax: 519-627-4227

 St. Clair Technologies, Inc.
 Calle Damanti S/N Col
 Guadalupe—Guaymas
 Sonora, Mexico 85440
 Phone: 011-526-2222-43834
 Fax: 011-526 2222-43553
IMPORTANT SAFETY NOTICE

IT IS YOUR RESPONSIBILITY to be completely familiar with the warnings and cautions used in this manual. These warnings and cautions advise against using specific service procedures that can result in personal injury, equipment damage, or cause the equipment to become unsafe. These warnings and cautions are not exhaustive. Allison Transmission could not possibly know, evaluate, or advise the service trade of all conceivable procedures by which service might be performed or of the possible hazardous consequences of each procedure. Consequently, Allison Transmission has not undertaken any such broad evaluation. Accordingly, ANYONE WHO USES A SERVICE PROCEDURE OR TOOL WHICH IS NOT RECOMMENDED BY ALLISON TRANSMISSION MUST first be thoroughly satisfied that neither personal safety nor equipment safety will be jeopardized by the service procedures used.

Also, be sure to review and observe WARNINGS, CAUTIONS, and NOTES provided by the vehicle manufacturer and/or body builder before servicing the Allison transmission in that vehicle.

Proper service and repair is important to the safe and reliable operation of the equipment. The service procedures recommended by Allison Transmission and described in this manual are effective methods for performing troubleshooting operations. Some procedures require using specially designed tools. Use special tools when and in the manner recommended.

The WARNINGS, CAUTIONS, and NOTES in this manual apply only to the Allison transmission and not to other vehicle systems which may interact with the transmission. Be sure to review and observe any vehicle system information provided by the vehicle manufacturer and/or body builder at all times the Allison transmission is being serviced.

WARNINGS, CAUTIONS, AND NOTES

Three types of headings are used in this manual to attract your attention:

WARNING! Is used when an operating procedure, practice, etc., which, if not correctly followed, could result in injury or loss of life.

CAUTION: Is used when an operating procedure, practice, etc., which, if not strictly observed, could result in damage to or destruction of equipment.

NOTE: Is used when an operating procedure, practice, etc., is essential to highlight.
TRADEMARKS USED IN THIS MANUAL

The following trademarks are the property of the companies indicated:

- Allison DOC™ is a trademark of General Motors Corporation.
- DEXRON® is a registered trademark of General Motors Corporation.
- LPS® Cleaner is a registered trademark of LPS Laboratories.
- Loctite® is a registered trademark of the Loctite Corporation.
- MagiKey® is a registered trademark of NEXIQ Technologies, Inc.
- Teflon® is a registered trademark of the DuPont Corporation.
- TranSynd™ is a trademark of Castrol Ltd.

SHIFT SELECTOR TERMS AND DISPLAY INDICATIONS

Shift selector terms and displays are represented in this manual as follows:

- Button Names — ↑, ↓, “display mode”, MODE, etc.
- Transmission Ranges — D (Drive), N (Neutral), R (Reverse), 1 (First), 2 (Second), etc.
- Displays — “o, L”; “o, K”, etc. (Display occurs one character at a time.)
TABLE OF CONTENTS

Page

Foreword .. ii

SAFETY INFORMATION

Important Safety Notice ... iii
Warnings, Cautions, and Notes ... iii
Trademarks Used in This Manual .. iv
Shift Selector Terms and Display Indications ... iv

SECTION 1. GENERAL DESCRIPTION

1–1. TRANSMISSION ... 1–1
1–2. TRANSMISSION CONTROL MODULE (TCM) ... 1–3
1–3. SHIFT SELECTOR ... 1–4
 A. Pushbutton Shift Selector .. 1–4
 B. Lever Shift Selector ... 1–5
1–4. THROTTLE POSITION SENSOR .. 1–5
1–5. SPEED SENSORS ... 1–6
1–6. CONTROL MODULE ... 1–7
1–7. WIRING HARNESSES .. 1–9
 A. External Wiring Harness .. 1–9
 B. Internal Wiring Harness .. 1–11
1–8. VEHICLE INTERFACE MODULE .. 1–12
1–9. AUTODETECT FEATURE .. 1–12
 A. Retarder ... 1–13
 B. Oil Level Sensor (OLS) .. 1–13
 C. Throttle Source .. 1–13
 D. Engine Coolant Temperature .. 1–14
1–10. TRANSID (TID) .. 1–14

SECTION 2. DEFINITIONS AND ABBREVIATIONS

2–1. CHECK TRANS LIGHT ... 2–1
2–2. ALLISON TRANSMISSION DIAGNOSTIC TOOL ... 2–1
2–3. ABBREVIATIONS ... 2–3
SECTION 3. BASIC KNOWLEDGE

3–1. BASIC KNOWLEDGE REQUIRED ... 3–1
3–2. USING THE TROUBLESHOOTING MANUAL ... 3–1
3–3. SYSTEM OVERVIEW .. 3–2
3–4. IMPORTANT INFORMATION IN THE TROUBLESHOOTING PROCESS 3–2
3–5. BEGINNING THE TROUBLESHOOTING PROCESS 3–4
3–6. TCM DIAGNOSTIC PROCEDURE ... 3–5
3–7. RESTTING OF TCM PARAMETERS TO SUPPORT ENGINE UPDATE 3–6
3–8. RESETTING TCM AUTOSELECT ... 3–6

SECTION 4. WIRE CHECK PROCEDURES

4–1. TESTING FOR OPENS, SHORTS BETWEEN WIRES, AND SHORTS-TO-GROUND 4–1
4–2. TESTING AT TRANSMISSION FEEDTHROUGH CONNECTOR FOR INTERNAL HARNESS OPENS, SHORTS BETWEEN WIRES, AND SHORTS-TO-GROUND 4–3

SECTION 5. OIL LEVEL SENSOR

5–1. INTRODUCTION .. 5–1
5–2. ELECTRONIC FLUID LEVEL READING (SHIFT SELECTOR) 5–3
 A. Fluid Level Reading Procedure ... 5–3
5–3. ELECTRONIC FLUID LEVEL CHECK (ALLISON DOC™ FOR PC–SERVICE TOOL) 5–5
 A. Fluid Level Reading Procedure ... 5–5

SECTION 6. DIAGNOSTIC CODES

6–1. DIAGNOSTIC CODE MEMORY ... 6–1
6–2. CODE READING AND CODE CLEARING .. 6–2
6–3. DIAGNOSTIC CODE RESPONSE .. 6–3
6–4. SHIFT SELECTOR DISPLAYS RELATED TO ACTIVE CODES 6–4
6–5. DIAGNOSTIC CODE LIST AND DESCRIPTION ... 6–4
6–6. DIAGNOSTIC CODE TROUBLESHOOTING .. 6–14
 A. Beginning the Troubleshooting Process ... 6–14
 B. Solenoid Locations .. 6–14
 C. Diagnostic Code Schematics ... 6–14

SECTION 7. INPUT AND OUTPUT FUNCTIONS

7–1. INPUT FUNCTIONS ... 7–1
7–2. OUTPUT FUNCTIONS .. 7–3

SECTION 8. GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS
APPENDICES

A. IDENTIFICATION OF POTENTIAL CIRCUIT PROBLEMS	A–1
B. CHECKING CLUTCH AND RETARDER PRESSURES	B–1
C. SOLENOID AND CLUTCH CHART	C–1
D. WIRE/CONNECTOR CHART	D–1
E. CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL	E–1
PART NUMBERS, AND REPAIR INSTRUCTIONS	
F. THROTTLE POSITION SENSOR ADJUSTMENT	F–1
G. WELDING ON VEHICLE/VEHICLE INTERFACE MODULE	G–1
H. HYDRAULIC SCHEMATICS	H–1
J. 3000 AND 4000 PRODUCT FAMILIES WIRING SCHEMATIC	J–1
K. SOLENOID RESISTANCE CHART	K–1
L. EXTERNALLY-GENERATED ELECTRONIC INTERFERENCE	L–1
M. DIAGNOSTIC TREE—3000 AND 4000 PRODUCT FAMILIES HYDRAULIC SYSTEM	M–1
N. ALLISON DOC™ FOR PC–SERVICE TOOL	N–1
P. INPUT/OUTPUT FUNCTIONS	P–1
Q. THERMISTOR TROUBLESHOOTING INFORMATION	Q–1
R. SAE J1939 COMMUNICATION LINK	R–1
Section 1—General Description

1–1.-transmission

The Allison 4th Generation Controls feature closed-loop clutch control to provide superior shift quality over a wide range of operating conditions. The 3000 and 4000 Product Families transmissions configurations can be programmed to have up to six forward ranges, neutral, and one reverse range. The MD 3070, 3700 SP, HD 4070/4076, 4700 RDS, 4700/4800 EVS, 4700/4800 SP have up to seven forward ranges and one reverse.

Figure 1–1 is a block diagram of the basic system inputs and outputs.

Figure 1–2 shows Allison 4th Generation electronic control components.

Allison 4th Generation Controls consist of the following elements:

- Remote 12V or 12/24V Max Feature Sealed Transmission Control Module (TCM)
- Remote Pushbutton or Lever Shift Selector
- Optional Secondary Shift Selector
- Throttle Position Sensor (TPS) (or electronic engine throttle data or PWM signal)
- Engine, Turbine, and Output Speed Sensors
- Control Module (Electro-Hydraulic Valve Body)
- Wiring Harnesses
- Vehicle Interface Module (VIM)
- Autodetect Feature
- TransID Feature
- Optional Retarder Controls
- Optional Engine Coolant Temperature Input.

Note:

- All external harnesses are OEM supplied.
- The VIM is an OEM option.
Figure 1–2. Typical Allison 4th Generation Control Components

NOTE: Illustration is not to scale. Actual harness configuration may differ from this illustration.
1–2. TRANSMISSION CONTROL MODULE (TCM)

The electronic control of the transmission is performed by a microcomputer. The microcomputer is an independent controller and is referred to as a Transmission Control Module (TCM). TCMs are available in both 12V and 12/24V configurations to match the configuration of the vehicle electrical system.

The TCM (Figure 1–3) contains the microcomputer which is the brain of the control system. The TCM receives and processes information defining:

- Shift selector
- Throttle position
- Sump/retarder temperature
- Pressure switch state
- Engine speed
- Turbine speed
- Transmission output speed.

The TCM uses the information to:

- Control transmission solenoids
- Supply system status
- Provide diagnostic information.

Each TCM has a date code laser etched on the outer case of the TCM. This is the date when the TCM passed final testing. This date is commonly used to denote the change configuration level of the TCM. It is normal for the TCM date displayed electronically to be a few days prior to the date shown on the label.
GENERAL DESCRIPTION

1–3. SHIFT SELECTOR

Pushbutton and lever shift selectors for the Allison 4th Generation Series are remote mounted from the TCM and communicate to the TCM via the J1939 communications data link. All shift selectors except the strip-type pushbutton have a dual digit vacuum fluorescent (VF) display and a mode indicator (LED). During normal transmission operation, illumination of the LED indicator shows that a secondary or special operating condition has been selected by pressing the MODE button. During diagnostic display mode, illumination of the LED indicator shows that the displayed diagnostic code is active. Display brightness is regulated by the same vehicle potentiometer that controls dash light display brightness. More information on both types of shift selectors is continued below.

A. Pushbutton Shift Selector (Figure 1–4)

There are three full-function pushbutton shift selectors and a strip pushbutton shift selector. Strip pushbutton shift selectors are used primarily by non-North American OEMs. A full-function shift selector has a MODE button and diagnostic display capability through the dual digit vacuum fluorescent (VF) display. The strip pushbutton shift selector does not have a MODE button, diagnostic capability, or adjustable illumination. The full-function pushbutton shift selector has six (6) pushbuttons which are R (Reverse), N (Neutral), D (Drive), ↓↓↓↓ (Down), ↑↑↑↑ (Up), and MODE. Manual forward range downshifts and upshifts are made by pressing the ↓↓↓↓ (Down) or ↑↑↑↑ (Up) arrow buttons after selecting D (Drive). The N (Neutral) button has a raised lip to aid in finding it by touch. The MODE button is pressed to select a secondary or special operating condition, such as ECONOMY shift schedule. Diagnostic information is obtained by pressing the ↑↑↑↑ (Up) and ↓↓↓↓ (Down) arrow buttons at the same time.

The strip pushbutton shift selector has either three or six range selection positions as shown in Figure 1–4. When a strip pushbutton shift selector is used, diagnostic information must be obtained by using the Allison DOC™ For PC–Service Tool, or a customer-furnished remote display.
B. Lever Shift Selector *(Figure 1–5)*

The lever shift selector can have as many as six forward range positions (seven for the 7-speed models), as well as R (Reverse) and N (Neutral). There is a hold override button which must be pressed and held in order to move between certain selector positions. The hold override button must be pressed when shifting between R, N, and D. The hold override button is released when the desired selector position is reached. The selector lever can be moved freely between D and the numbered forward ranges without pressing the hold override button. The lever selector can be chosen with the lever on the left side or on the right side and with the R (Reverse) position toward the front or toward the rear of the selector. Diagnostic and oil level (if sensor is present) information is obtained from the LED display by pressing the “display mode” button.

![Figure 1–5. Typical Lever Shift Selector](image)

1–4. THROTTLE POSITION SENSOR *(Figure 1–6)*

The Throttle Position Sensor (TPS) can be mounted to the engine, chassis, or transmission. The TPS contains a pull actuation cable and a potentiometer. One end of the cable is attached to the engine fuel lever and the other, inside a protective housing, to the TPS potentiometer. Output voltage from the TPS is directed to the TCM through the external harness. The voltage signal indicates the throttle position and, in combination with other input data, determines shift timing.

![Figure 1–6. Throttle Position Sensor (Without Mounting Brackets)](image)
1–5. SPEED SENSORS *(Figure 1–7)*

Three speed sensors—engine speed, turbine speed, and output speed—provide information to the TCM. The engine speed signal is generated by ribs on the shell of the torque converter pump. The turbine speed signal is generated by the rotating-clutch housing spline contours. The output speed signal is generated by a toothed member attached to the output shaft (except for the 3000 Product Family 7-speed models, where the toothed member is the transfer case idler gear). The speed ratios between the various speed sensors allow the TCM to determine if the transmission is in the selected range. Speed sensor information is also used to control the timing of clutch apply pressures, resulting in the smoothest shifts possible. Hydraulic problems are detected by comparing the speed sensor information for the current range to that range’s speed sensor information stored in the TCM memory.

![Figure 1–7. Speed Sensors](image-url)
GENERAL DESCRIPTION

1–6. CONTROL MODULE (Figure 1–8)

The Allison 4th Generation Series transmission control module contains a main body assembly and solenoid valve body assembly, which are mounted to an aluminum channel plate. The TCM issues commands to various solenoids in the two valve bodies to govern fluid flow to the clutches (including torque converter clutch). The solenoids produce an output pressure that is proportional to current from the TCM. Hence, the solenoids are referred to as pressure control solenoids (PCS).

Figure 1–8. Allison 4th Generation Control Modules
GENERAL DESCRIPTION

The main valve body assembly contains the following:

- Main pressure regulator valve
- Control main regulator valve
- Converter flow valve
- Lube regulator valve
- Converter regulator valve
- Exhaust backfill valve
- Two latching logic valves
- On/Off solenoid SS1.

The solenoid valve body assembly contains the following:

- Pressure control solenoid MAIN MOD
- PCS1 (A trim)
- PCS2 (B trim)
- PCS3 (C trim)
- PCS4 (D trim)
- TCC (lockup)
- Diagnostic pressure switch PS1
- Five solenoid regulator valves
- One diagnostic valve.

The low valve body assembly (in 3000 and 4000 Product Families 7-speed models) contains solenoid PCS6 (C6) and one ON/OFF solenoid SS2 (C6 enable). Refer to the appropriate service manual for valve locations.

The Allison 4th Generation controls system includes a main modulation solenoid. Modulated main pressure results in improved cooler flow and reduced pump losses when throttle position and output speed is low. The Allison 4th Generation Controls TCM commands the main mod solenoid ON when all of the following conditions are simultaneously met:

- Sump temperature is greater than 30°C (86°F) and less than 150°C (302°F) [greater than –5°C (23°F) and less than 225°C (437°F) for 4700 and 4800 model transmissions].
- Engine speed less than 1200 rpm in all ranges except neutral. There are no restrictions on engine speed in neutral.
- Throttle percentage less than 15 percent in reverse, low (7-speed), first, or second range. Main mod may be commanded ON in neutral at any throttle position.
- Output speed is less than 250 rpm in neutral, reverse, low (7-speed), first, or second range.
- The PTO input to the TCM indicates the PTO is OFF.
- Shift not in progress.

The TCM may activate the main mod solenoid for improved clutch control and transmission response during other unusual operating situations.

A temperature sensor (thermistor) is located in the internal wiring harness. Changes in sump fluid temperature are indicated by changes in sensor resistance, which changes the signal sent to the TCM. Refer to the chart in Appendix Q.

The oil level sensor (OLS) is a float type device mounted on the control module channel plate. The OLS senses transmission fluid level by electronically measuring the buoyancy forces on the float. The sensor operates on 5VDC supplied by the TCM. The oil level sensor is available on any 3000 and 4000 Product Families transmissions except the 3000 7-speed transmissions.
GENERAL DESCRIPTION

The diagnostic pressure switch PS1 is mounted on the solenoid valve body assembly and performs the following two functions:

- When the C5 clutch is filled, PS1 senses PCS2 solenoid regulator valve position to verify proper C3 clutch control in reverse, neutral, and first range.
- When the C5 clutch is exhausted, as in second through sixth ranges, PS1 verifies the position of the C1 and C2 latch valves.

The turbine speed sensor is also mounted on the control module for the 3000 Product Family transmissions. The turbine speed sensor is directed at the rotating-clutch housing. The turbine speed sensor on the 4000 Product Family transmission is located on the outside of the main housing.

1–7. WIRING HARNESSES

A. External Wiring Harness (Figure 1–9)

The TCM uses a single 80-way connector, which is used to receive input from the following:

<table>
<thead>
<tr>
<th>Transmission</th>
<th>TPS</th>
<th>Diagnostic tool connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>Vehicle interface module (VIM)</td>
<td>Retarder</td>
</tr>
<tr>
<td>Turbine</td>
<td>Retarder control module</td>
<td>Retarder temperature sensor</td>
</tr>
<tr>
<td>Output speed sensor</td>
<td>Shift selector</td>
<td>Accumulator</td>
</tr>
</tbody>
</table>

Many harnesses will include a bulkhead fitting to separate cab and chassis components. Also, many different styles and materials for harnesses are likely to be encountered.

NOTE: Allison Transmission is providing for service of wiring harnesses and wiring harness components as follows:

- **Repair parts for the internal wiring harness and for wiring harness components attached to the shift selector will be available through the Allison Transmission Parts Distribution Center (PDC). Use the P/N from your appropriate parts catalog or from Appendix E in this manual. Allison Transmission is responsible for warranty on these parts.**

- **Repair parts for the external harnesses and external harness components must be obtained from St. Clair Technologies Inc. (SCTI). SCTI provides parts to any Allison customer or OEM and is responsible for warranty on these parts. SCTI recognizes Allison Transmission, manufacturers, and SCTI part numbers. SCTI provides a technical HELPLINE at 519-627-1673 (Wallaceburg). SCTI will have parts catalogs available. The SCTI addresses and phone numbers for parts outlets are:**

 - **St. Clair Technologies, Inc.**
 - **920 Old Glass Road**
 - **Wallaceburg, Ontario, Canada N8A 4L8**
 - **Phone: 519-627-1673**
 - **Fax: 519-627-4227**

 - **St. Clair Technologies, Inc.**
 - **Calle Damanti S/N Col**
 - **Guadalupe—Guaymas**
 - **Sonora, Mexico 85440**
 - **Phone: 011-526 2222-43834**
 - **Fax: 011-526-2222-43553**

- **SCTI is the source for external harness repair parts.**
Figure 1–9. Typical 4th Generation Electronic Controls External Wiring Harnesses

NOTE: Illustration is not to scale. Actual harness configuration may differ from this illustration.
GENERAL DESCRIPTION

B. Internal Wiring Harness (Figure 1–10)

The internal wiring harness provides connection between the following:

- External harness
- Pressure control and shift solenoids
- Oil level sensor
- Diagnostic pressure switch
- Temperature sensor
- Turbine speed sensor.

Figure 1–10. Allison 4th Generation Internal Wiring Harness
GENERAL DESCRIPTION

1–8. VEHICLE INTERFACE MODULE (Figure 1–11)

The vehicle interface module (VIM) provides relays, fuses, and connection points for interface with the output side of the vehicle electrical system. VIMs are available for both 12V and 24V electrical systems. The VIM for 12V systems uses all 12V relays. The VIM for 24V systems has all 24V relays. Refer to the appropriate parts catalog for the transmission assembly number that you are servicing for detailed parts information. Refer to Pages D–15 and D–16 for VIM wire number and terminal information.

Some OEMs may provide their own equivalent for the VIM which performs the same functions as the VIM shown in Figure 1–11.

![Figure 1–11. Vehicle Interface Module (VIM)](image)

1–9. AUTODETECT FEATURE

Autodetect is active on the first 25 engine starts and, in the case of throttle source detection logic, may continue past 25 ignition cycles until a valid source is determined (details follow in A through D below). Autodetect takes place within the first 30 seconds of each engine start monitored. Autodetect searches for the presence of the following transmission components or data inputs in the priority listed:

- Retarder: Present, Not Present
- Oil Lever Sensor (OLS): Present, Not Present
- Throttle: TPS, J1587, J1939
- Engine Coolant Temperature: Sensor, J1939, J1587

Even after autodetect has been completed, it can be reset to monitor an additional group of engine starts. Reset may be necessary if a device known to be present is not detected or if an autodetectable component or sensor was added after the initial vehicle build. Reset is accomplished by using Allison DOC™ For PC–Service Tool. To use the Allison DOC™ For PC–Service Tool, select “RESET AUTODETECT” to search for all four devices. Select “RESET AUTODETECT RETARDER” to search for a retarder only. Selecting “RESET ADAPTIVE SHIFT PARAMETERS” will not reset autodetect logic.

The Allison DOC™ For PC–Service Tool can also be used to override autodetect and manually enter the component or sensor to be recognized by the TCM by changing appropriate “customer modifiable constants” (CMC). The four items above are the only CMCs that are autodetectable. Other CMCs can be changed at any time and are not related to autodetect. Consult the Allison DOC™ User’s Guide, GN3433EN, for, detailed instructions related to Allison 4th Generation Controls CMC. Additional details for each of the four autodetectable features are given below.
GENERAL DESCRIPTION

A. Retarder

Autodetect searches for the presence of pressure control solenoid 5 (PCS5) to the retarder during the first 35 engine ignition cycles. Retarder autodetect will countdown for a maximum of 35 ignition cycles while recording detections of a retarder. A retarder will be identified as present and the retarder autodetect logic will stop once it is detected for three consecutive ignition cycles. If the ignition cycle counter completes the 35 cycles before there are three consecutive detections of a retarder, the software will log that there is no retarder and the retarder autodetect logic will stop. If the autodetect logic is not satisfied during the first 35 engine starts, the retarder is not detected and will not function on subsequent engine starts.

If a retarder is present but is not detected by autodetect, the retarder will not function. Be sure to check for proper functioning immediately after the 35th engine start. If the retarder is not functioning, check PCS5 solenoid for an open, short-to-ground, or short-to-battery condition. Use the Allison DOC™ For PC–Service Tool to reset retarder autodetect or to manually select the presence of the retarder after the PCS5 circuit is repaired.

B. Oil Level Sensor (OLS)

NOTE: If an OLS is known to be present, but has not been detected, a possible cause is that the transmission fluid level is too low. Check the fluid level before beginning the OLS troubleshooting.

Oil level sensor autodetect will countdown for a maximum of 25 engine starts while recording detections of an OLS. The TCM monitors the OLS input voltage on wire 116. OLS input voltage must exceed a predetermined level for the TCM to record a detection. Additionally, OLS detection must occur within 12.5 seconds on any given engine start. An OLS will be identified as present and the OLS autodetect logic will stop once it is detected during any single engine start.

If the engine start counter completes 25 cycles before TCM records one detection of an OLS, the software will log that there is no OLS present and the OLS autodetect logic will stop. Then the TCM concludes that no OLS is present.

No OLS diagnostics take place until the OLS is detected. Frequently check for the presence of oil level diagnostics if the transmission is known to contain an OLS. If an OLS is known to be present, but has not been detected, troubleshooting the OLS circuit is required. After the OLS circuit is repaired, reset autodetect or manually select the OLS function using the Allison DOC™ For PC–Service Tool.

C. Throttle Source

Throttle autodetect will increment a counter for a throttle source on each engine start during which the possible throttle source is detected. When the counter for any of the sources indicates five consecutive detections, the software will set a “confidence flag” to indicate that this is an available throttle source. Multiple throttle sources can be detected on a single engine start and multiple confidence flags can be set. There is no limit to the number of engine starts for autodetection of the throttle source until a confidence flag is set for a source. Once a confidence flag is set for any one of the sources, a counter begins to countdown for 15 additional engine starts. During the entire autodetect period, the software will use the highest priority source as the throttle source if multiple sources are detected before any confidence flags are set. Once a confidence flag is set, that source is
used as the source for the throttle signal. When the countdown period is complete, the software will use the highest priority throttle source having a confidence flag set and the autodetect logic will stop.

D. Engine Coolant Temperature

Engine coolant temperature sensor autodetect will countdown for a total of 25 engine starts while recording detections of engine coolant temperature sources. A “confidence flag” will be set once a source is detected for five consecutive engine starts. Multiple sources detected before a confidence flag is set or multiple confidence flags will result in the highest priority source being used as the engine coolant temperature source. Multiple sources can be detected on a single engine start cycle.

1–10. TRANSID (TID)

The TransID feature enables the TCM to recognize various transmission hardware configurations and select an appropriate software calibration. However, if a matching calibration does not exist in memory, the TCM registers a diagnostic code. Furthermore, TID only works when the controller and transmission have the same generation controls. Thus, TID will not allow an Allison 4th Generation TCM to recognize a transmission with WTEC III controls, nor will TID allow a WTEC III ECU to recognize a transmission with Allison 4th Generation Controls.

The TCM senses the transmission configuration using TID wire 176. In initial versions of Allison 4th Generation Controls, wire 176 is connected to high side driver 1 (HSD1), wire 111, in the internal wiring harness. HSD1 supplies power to PCS6 and MAIN MOD solenoids. This wiring configuration is designated TID A.

Whenever a TID level change is to be made, the new TID level calibration will be added to the PROM Calibration Configurator System (PCCS) before the change (s) is (are) made in production to the transmissions. All TCMs programmed and sold after that date will be loaded with the new TID calibration. These TCMs will contain calibrations for the new level transmission and all previous TID levels and will automatically load the correct calibration for the transmission based on the TID signal sensed by Autodetect during the first 25 engine starts.
SECTION 2—DEFINITIONS AND ABBREVIATIONS

2–1. CHECK TRANS LIGHT

When the TCM detects a serious fault, the CHECK TRANS light (usually located on the vehicle instrument panel) illuminates and action is automatically taken to protect operator, vehicle, and the transmission. A diagnostic trouble code (DTC) will nearly always be registered when the CHECK TRANS light is on; however, not all diagnostic codes will turn on the CHECK TRANS light. Codes related to the CHECK TRANS light are detailed in the diagnostic trouble code chart (refer to Section 6).

Illumination of the CHECK TRANS light indicates that a condition was detected that requires service attention. Operation may or may not be restricted. Even when operation is restricted, the vehicle can be operated to reach a service assistance location. Depending upon the cause for the CHECK TRANS light illumination, the TCM may or may not respond to shift selector requests. The transmission may be locked in a range. That range will be shown on the shift selector display. Both upshifts and downshifts may be restricted when the CHECK TRANS light is illuminated. Seek service assistance as soon as possible.

Each time the engine is started, the CHECK TRANS light illuminates briefly and then goes off. This momentary lighting shows the light circuit is working properly. If the light does not come on during engine start, request service immediately.

2–2. ALLISON TRANSMISSION DIAGNOSTIC TOOL

Allison DOC™ (Diagnostic Optimized Connection) For PC–Service Tool is a PC-based diagnostic tool for use with 3000 and 4000 Product Families transmissions. The Allison DOC™ For PC–Service Tool is a full-feature diagnostic software application supporting the Allison 4th Generation Control System. When installed on the user’s own PC, it will allow the technician to acquire data from the transmission’s control system and through the use of embedded troubleshooting manuals, conduct systematic troubleshooting of transmission complaints.

Basic Features

Allison DOC™ For PC–Service Tool uses a Windows style graphical user interface (GUI) and includes:

- User selected views of multiple transmission parameters
- Active and historical diagnostic trouble codes (DTCs)
- Graphical instrument panel view of transmission parameters
- Strip chart function
- User configurable Snapshot function
- User configurable Print function
- Code driven links to embedded Allison 4th Generation Control System Troubleshooting Manuals
- Reprogramming capability (available after satisfying Allison Transmission training certification requirements)
- Demo Mode which allows the user to practice the program without being connected to a vehicle
- New animated screen by screen help support (found in Help, Video-based training materials, Allison DOC™ For PC–Service Tool Training Videos)
- Application Configuration—This menu function serves as the platform for three different features:
 1. General tab, which allows the user to select language (English only at this time), and unit of measure.
 2. TCM Reprogramming tab, used to enable the reprogramming capability of the Allison DOC™ For PC–Service Tool.
 3. Update Application tab, will access a web URL that will contain minor updates for the diagnostic tool to support changes in the various transmission control systems.
- Data Bus Viewer allows the user to capture (see and save) the raw data transmitted on the various vehicle data buses supported by Allison DOC™ For PC–Service Tool (J1939, and J1850)
DEFINITIONS AND ABBREVIATIONS

- Printed user’s manual and laminated Job Aid Card
- Adobe® Acrobat® 5.0 bundled on the CD for reading the Troubleshooting Manual
- Microsoft® Media Player® 6.4 and 7.0 bundled on the CD for displaying various and updated training videos (available from the application Help menu).

PC Platform Definition

Allison DOC™ For PC–Service Tool has been tested with and is known to operate on PCs with the following configurations*:

- Operating System: Microsoft® Windows® XP Professional, and Windows® 2000 (SP4 or later)
- CPU: Pentium® III, 800MHz, or Pentium® 4, 2.0 GHz (Recommended)
- RAM: 128MB RAM, or 256MB RAM or greater (Recommended)
- Internet connection capability (Internet Explorer 5.0 or greater)
- Hard Drive: 20GB ATA, or 40GB ULTRA ATA/66 or greater (Recommended)
- One USB port V1.1, or USB 2.0 (Recommended) ¹
- CD-ROM: 16x, or 48x Max. Speed or greater (Recommended).

*NOTE:

1. The Allison DOC™ For PC–Service Tool will not function correctly on PCs not meeting the above listed definition and will not be supported.
2. PCCS does not support Windows® NT® or ME® when recalibrating 3000 and 4000 Product Families transmissions.
3. PCCS is a separate, stand-alone software application.
4. For the latest requirements, please refer to www.allisontransmission.com

NOTE: Additional information available in Appendix N.

¹ A serial port (COM1) is required to support the legacy CEC1 controller and for J1850 communications. More information will be provided in future SILs.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/N</td>
<td>Assembly Number</td>
</tr>
<tr>
<td>ABS</td>
<td>Anti-lock Brake System—OEM-provided means to detect and prevent wheel stoppage to enhance vehicle handling. Retarder and engine brakes will not apply when ABS is active.</td>
</tr>
<tr>
<td>Amp</td>
<td>Unit of electrical current</td>
</tr>
<tr>
<td>API</td>
<td>Application Program Interface</td>
</tr>
<tr>
<td>AT</td>
<td>Allison Transmission</td>
</tr>
<tr>
<td>C1...C6</td>
<td>Clutch 1...Clutch 6</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network—A network for all SAE J1939 communications in a vehicle (engine, transmission, ABS, etc.)</td>
</tr>
<tr>
<td>CIN</td>
<td>Calibration Identification Number</td>
</tr>
<tr>
<td>CMC</td>
<td>Customer Modified Constant</td>
</tr>
<tr>
<td>CPA</td>
<td>Connector Position Assurance</td>
</tr>
<tr>
<td>CT</td>
<td>Closed Throttle</td>
</tr>
<tr>
<td>DMM</td>
<td>Digital Multimeter</td>
</tr>
<tr>
<td>DNA</td>
<td>Does Not Adapt—Adaptive shift control is disabled</td>
</tr>
<tr>
<td>DNS</td>
<td>DO NOT SHIFT—Refers to the DO NOT SHIFT diagnostic response during which the CHECK TRANS light is illuminated and the transmission will not shift and will not respond to the Shift Selector</td>
</tr>
<tr>
<td>DOC</td>
<td>Diagnostic Optimized Connection</td>
</tr>
<tr>
<td>DPA</td>
<td>Dearborn Protocol Adapter</td>
</tr>
<tr>
<td>DTC</td>
<td>Diagnostic Trouble Code</td>
</tr>
<tr>
<td>DVOM</td>
<td>Digital Volt/Ohmmeter</td>
</tr>
<tr>
<td>ECM</td>
<td>Engine Control Module</td>
</tr>
<tr>
<td>EMI</td>
<td>ElectroMagnetic Interference</td>
</tr>
<tr>
<td>FBO</td>
<td>Feature Based Ordering</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>GPI</td>
<td>General Purpose Input—Input signal to the TCM to request a special operating mode or condition</td>
</tr>
<tr>
<td>GPO</td>
<td>General Purpose Output—Output signal from the TCM to control vehicle components (such as PTOs, backup lights, etc.) or allow a special operating mode or condition</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HSD</td>
<td>High Side Driver</td>
</tr>
<tr>
<td>J1587</td>
<td>Engine/transmission serial data communications link</td>
</tr>
<tr>
<td>J1939</td>
<td>High-speed vehicle serial data communications link</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode—Electronic device used for illumination</td>
</tr>
<tr>
<td>LRTP</td>
<td>Low Range Torque Protection</td>
</tr>
</tbody>
</table>
DEFINITIONS AND ABBREVIATIONS

2–3. ABBREVIATIONS (cont’d)

LSD Low Side Driver
MB Mega Byte
NNC Neutral No Clutches—Neutral commanded with no clutches applied
NVL Neutral Very Low—The TCM has sensed turbine speed below 150 rpm when output speed
is below 100 rpm and engine speed is above 400 rpm when N (Neutral) was selected. This
is usually caused by a dragging C1 or C3 clutch or a failed turbine speed sensor. NVL is
attained by turning D solenoid “ON” (in addition to E solenoid) and the C4 and C5
clutches are applied to lock the transmission output.
OEM Original Equipment Manufacturer—Maker of vehicle or equipment
Ohm Unit of electrical resistance
OL Over Limit or Oil Level—For Over Limit see “∞”. Indicates Oil Level is being displayed
on a shift selector
OLS Oil Level Sensor—Electronic device (optional) on control module for indicating
transmission fluid level
PC Personal Computer
PCCS PROM Calibration Configurator System
PCS Pressure Control Solenoid
PLR Primary Lock Reinforcement (Connector)
P/N Part Number
PROM Programmable Read Only Memory
PSS Primary Shift Selector—Main shift selector in a two-selector control system.
PTO Power Takeoff
PWM Pulse Width Modulation
RELS Reduced Engine Load at Stop
RFI Radio Frequency Interference
RMR Retarder Modulation Request—Signal from a retarder control device
RPR Return to Previous Range—Diagnostic response in which the transmission is commanded
to return to previously commanded range
SCI Serial Communication Interface—Used to transmit data and messages between the
diagnostic tool and the TCM and other systems such as electronically-controlled engines.
SCTI St. Clair Technologies, Inc.
SEM Shift Energy Management
S/N Serial Number
SOH State Of Health
SOL OFF All SOLenoids OFF
SPI Serial Peripheral Interface—The means of communication between the microprocessor
and the interface circuits
DEFINITIONS AND ABBREVIATIONS

2–3. ABBREVIATIONS (cont’d)

SS Shift Solenoid
SSS Secondary Shift Selector—Alternate shift selector in a two-selector control system
TCC Torque Converter Clutch
TCM Transmission Control Module
TFT Transmission Fluid Temperature
TID TransID—A feature which allows the TCM to know the transmission configuration and provide the corresponding calibration required
TPA Terminal Position Assurance
TPS Throttle Position Sensor—Potentiometer for signaling the position of the engine fuel control lever
V Version—Abbreviation used in describing TCM software levels
VDC Volts Direct Current (DC)
VF Vacuum Fluorescent
VIM Vehicle Interface Module—A watertight box containing relays and fuses—interfaces the transmission electronic control system with components on the vehicle
VIW Vehicle Interface Wiring—Interfaces TCM programmed input and output functions with the vehicle wiring
Volt Unit of electrical force
WOT Wide Open Throttle
∞ Infinity—Condition of a circuit with higher resistance than can be measured, effectively an open circuit
SECTION 3—BASIC KNOWLEDGE

3–1. BASIC KNOWLEDGE REQUIRED

To service Allison 4th Generation Controls, the technician must understand basic electrical concepts. Most troubleshooting checks consist of checking resistance, continuity, and checking for shorts between wires and to ground. Technicians need to know how to use a digital volt/ohmmeter (DVOM) to make resistance and continuity checks. The technician should be able to use jumper wires and breakout harnesses and connectors. Technicians unsure of making the required checks should ask questions of experienced personnel or find instruction.

The technician should also have the mechanical aptitude required to connect pressure gauges or transducers to identified pressure ports used in the troubleshooting process. Pressure tap locations and pressure values are shown in Appendix B—Checking Clutch Pressures.

Input power, ground, neutral start circuitry, etc., can cause problems with electronic controls or vehicle functioning and may not generate a diagnostic code. A working knowledge of the Allison 4th Generation Controls vehicle installation is necessary in troubleshooting installation-related problems.

Refer to Section 8 for information concerning performance complaints (non-code) troubleshooting. A complete wiring schematic is shown in Appendix J. Refer to the Allison 4th Generation Controls and General Information Sales Tech Data Book for information concerning electronic controls installation and the Installation Checklist. Reliable transmission operation and performance depend upon a correctly installed transmission. Review the Installation Checklist in the 3000 and 4000 Product Families transmissions Tech Data Books for proper installation.

NOTE: Allison Transmission is providing for service of wiring harnesses and wiring harness components as follows:

- Repair parts for the internal wiring harness and for wiring harness components attached to the shift selector will be available through the Allison Transmission Parts Distribution Center (PDC). Use the P/N from your appropriate parts catalog or from Appendix E in this manual. Allison Transmission is responsible for warranty on these parts.

- Repair parts for the external harnesses and external harness components must be obtained from St. Clair Technologies Inc. (SCTI). SCTI provides parts to any Allison customer or OEM and is responsible for warranty on these parts. SCTI recognizes Allison Transmission, manufacturers, and SCTI part numbers. SCTI provides a technical HELPLINE at 519-627-1673 (Wallaceburg). SCTI will have parts catalogs available. The SCTI addresses and phone numbers for parts outlets are:

 St. Clair Technologies, Inc.
 920 Old Glass Road
 Wallaceburg, Ontario, Canada N8A 4L8
 Phone: 519-627-1673
 Fax: 519-627-4227

 St. Clair Technologies, Inc.
 Calle Damanti S/N Col Guadalupe—Guaymas
 Sonora, Mexico 85440
 Phone: 011-526 2222-43834
 Fax: 011-526-2222-43553

3–2. USING THE TROUBLESHOOTING MANUAL

Use this manual as an aid to troubleshooting the Allison 4th Generation Controls. Every possible problem and its solution cannot be encompassed by any manual. However, this manual does provide a starting point from which most problems can be resolved.

Once a problem solution is discovered in the manual do not look further for other solutions. It is necessary to determine why a problem occurred. The root cause of a problem as well as the symptom must be corrected to be sure of trouble-free operation. For example, taping a wire that has been rubbing on a frame rail will not correct the problem unless the rubbing contact is eliminated.
3–3. SYSTEM OVERVIEW

Allison 4th Generation Control functions are controlled by the TCM. The TCM reads the following to determine when to command a shift:

- Shift selector range selection
- Output speed
- Throttle position.

In order to control the oncoming and off-going clutches during a shift, the TCM monitors:

- Turbine speed
- Output speed
- Throttle position.

When the TCM detects an electrical fault, it logs a diagnostic code indicating the faulty circuit and may alter the transmission operation to prevent or reduce damage.

When the TCM detects a non-electrical problem while trying to make a shift, the TCM may try that shift a second or third time before setting a diagnostic code. Once that shift has been retried, and a fault is still detected, the TCM sets a diagnostic code and holds the transmission in a fail-to-range mode of operation.

3–4. IMPORTANT INFORMATION IN THE TROUBLESHOOTING PROCESS

A. Before Beginning Troubleshooting

Before beginning the troubleshooting process, read and understand the following:

- Allison Transmission recommended wire numbers (i.e. 158) all use a “1” for the first digit and the pin-out information at the TCM for the second and third digits.
- Shut off the engine and ignition before any harness connectors are disconnected or connected.
- Remember to do the following when checking for shorts and opens:
 - Minimize movement of wiring harnesses when looking for shorts. Shorts involve wire-to-wire or wire-to-ground contacts and moving the harnesses may eliminate the problem.
 - Wiggle connectors, harnesses, and splices when looking for opens. This simulates vehicle movements which occur during actual operation.
- When disconnecting a harness connector, be sure the pulling force is applied to the connector itself and **not the wires** extending from the connector.
- Resistance checks involving wiring between the TCM connector and other components adds about one Ohm of resistance to the component resistance shown.
- Inspect all connector terminals for damage. Terminals may have been bent or lost the necessary tension to maintain firm contact.
- Clean dirty terminals or connectors with isopropyl alcohol and a cotton swab, or a good quality, non-residue, non-lubricating, cleaning solvent such as LPS Electro Contact Cleaner® or LPS NoFlash Electro Contact Cleaner®.
BASIC KNOWLEDGE

The cleaning solvent must not be:
- Chlorine based
- Contain petroleum distillates
- Conduct electricity.

CAUTION:

The cleaning solvent should evaporate quickly to prevent the possibility of condensation within the connectors. Always blow or shake any excess cleaner from the connector before assembling it to its mating connector or hardware. Cleaner trapped in the connector can affect the connector seal. Refer to SIL 17-TR-94, latest revision, for detailed information on the recommended cleaners.

CAUTION:

Care should be taken when welding on a vehicle equipped with electronic controls. Refer to Appendix G, Paragraph 1–1.

- Diagnostic codes displayed after system power is turned on with a harness connector disconnected, can be ignored and cleared from memory. Refer to Section 6, Diagnostic Codes, for the code clearing procedure.

NOTE:

Turn off the vehicle HIGH IDLE switch, if present, before shifting from N (Neutral) to D (Drive). D (Drive) or R (Reverse) will not be attained unless the shift is made with the engine at idle. Also, be aware of other interlocks that would prevent attaining D (Drive) or R (Reverse). Examples are “wheelchair lift not stored” and “service brakes not applied” (service brake interlock present).

B. Cold Weather Starts

All Highway Series transmissions are programmed to restrict full operation until specific fluid temperatures are reached. Refer to the Table 3–1 for temperature restrictions.

<table>
<thead>
<tr>
<th>Sump Fluid Temperature</th>
<th>CHECK TRANS Light</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>–32°C to –7°C (–25°F to 19°F)</td>
<td>OFF</td>
<td>Neutral, Reverse, Second</td>
</tr>
<tr>
<td>–7°C (19°F)</td>
<td>OFF</td>
<td>Full operation in all ranges</td>
</tr>
</tbody>
</table>

NOTE:

When sump temperature is below 10°C (50°F) and transmission fluid is C4 (not DEXRON® or TranSynd™), follow these procedures when making directional shift changes:

- *To shift from forward to reverse, select N (Neutral) and then R (Reverse).*
- *To shift from reverse to forward, select N (Neutral) and then D (Drive) or other forward range.*

Failure to follow these procedures may cause illumination of the CHECK TRANS light and the transmission will be restricted to N (Neutral).

Transmission operation at cold ambient temperatures may require preheating or the use of a lower viscosity transmission fluid.
BASIC KNOWLEDGE

C. High Fluid Temperature

The transmission is considered to be overheated when any of the temperatures in Table 3–2 are exceeded:

Table 3–2. Overheated Transmission Fluid Temperatures

<table>
<thead>
<tr>
<th>Location of Fluid</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sump fluid</td>
<td>121°C (250°F)</td>
</tr>
<tr>
<td>Fluid to cooler</td>
<td>149°C (300°F)</td>
</tr>
<tr>
<td>Retarder out fluid</td>
<td>165°C (330°F)</td>
</tr>
</tbody>
</table>

If the transmission overheats during normal operation, measure the fluid level in the transmission. Refer to the Transmission Fluid Check procedure in the appropriate transmission mechanic’s tips manual.

CAUTION:
The engine should never be operated for more than ten (10) seconds at full throttle with the transmission in range and the output stalled. Prolonged operation of this type will cause the transmission fluid temperature to become excessively high and will cause severe overheat damage to the transmission.

If the engine temperature gauge indicates a high temperature, the transmission is probably overheated. Stop the vehicle and inspect the cooling system. If it appears to functioning properly, run the engine at 1200–1500 rpm with the transmission in N (Neutral). This should reduce the transmission and engine temperature to normal operating levels in two to three minutes. If temperatures do not decrease, reduce the engine rpm.

If the engine temperature indicates a high temperature, an engine or radiator problem is indicated. If high temperature in either the engine or transmission persists, stop the engine and have the overheating condition investigated by maintenance personnel.

3–5. BEGINNING THE TROUBLESHOOTING PROCESS

NOTE: Whenever a transmission is overhauled, exchanged, or has undergone internal repairs, the TCM MUST BE RESET TO FACTORY VALUES by selecting “Reset To Unadapted Shifts” (all), and “Reset Autodetect Information” in Allison DOC™ For PC–Service Tool.

1. Begin troubleshooting by determining the transmission fluid level and TCM input voltage. Remember that some problems may be temperature related. Do troubleshooting at the temperature level where the problem occurs. Check diagnostic codes by:
 • Using the shift selector display (see Paragraph 6–2 for code reading).
 • Using the Allison DOC™ For PC–Service Tool.

2. When a problem exists but a diagnostic code is not indicated, refer to the Performance Complaint Section (Section 8) for a listing of various electrical and hydraulic problems, their causes, and remedies.
3. If a diagnostic code is found in the TCM memory, record all available code information and clear the active indicator. Refer to Section 6.

4. Test drive the vehicle to confirm a diagnostic code or performance complaint.
 - If the code reappears, refer to the Diagnostic Code section (Section 6) and the appropriate code chart. The Diagnostic Code section lists diagnostic codes and their description. Locate the appropriate troubleshooting chart and follow the instructions.
 - If the code does not reappear, it may be an intermittent problem. Use the Allison DOC™ For PC–Service Tool and the code display procedure described in Section 6. The code display procedure will indicate the number of times the diagnostic code has occurred. Refer to the troubleshooting chart for the possible cause(s) of the problem.
 - Appendix A deals with the identification of potential circuit problems. Refer to Appendix A if a circuit problem is suspected.

5. If difficulties arise, you have unanswered questions, or if you are unable to quickly identify the root cause during troubleshooting, please contact the Technical Assistance Center (TAC):

 Technical Assistance Center
 PO Box 894, Mail Code 462-470-PF9
 Indianapolis, IN 46206-0894
 Phone: 1-800-252-5283

 NOTE: Information concerning specific items is contained in the appendices located in the back of this manual. The appendices are referred to throughout the manual.

3–6. TCM DIAGNOSTIC PROCEDURE
 - Use the Allison DOC™ For PC–Service Tool to verify the current calibration information number (CIN) and record or print a report of the current customer modifiable constants (CMC) information for later reference.
 - Remove the 80-way connector from the suspect TCM; inspect the connector for damaged or bent pins.
 - Replace the TCM with a known, good TCM from a similar vehicle.

 NOTE: If using a TCM from another vehicle is unavoidable, the TCM MUST BE set to factory values and the vehicle MUST BE driven carefully to adapt the shifts to the test vehicle. Refer to SIL 16-WT-96 for the correct procedure. Be sure to reset the Adaptive Shift parameters and Autodetect information when it is installed in the original vehicle.

 - If the replacement TCM corrects the original complaint, reinstall the original TCM to verify that the complaint returns. If the complaint is confirmed, install a new TCM.
 - If the complaint does not return, leave the original TCM installed. Disconnecting and reconnecting the TCM can often correct faulty wiring harness connections that may have been present.
 - Clear any diagnostic codes that may be present and test drive the vehicle to confirm the repair.

 NOTE: All Allison 4th Generation Controls TCMs are designed to be isolated from the vehicle chassis ground. Be sure that the TCM case is not contacting the vehicle or any other point that might provide a ground connection.
3–7. RESETTING OF TCM PARAMETERS TO SUPPORT ENGINE UPDATE

Shift Energy Management (SEM) Autoselect feature may be used on certain transmissions. Autoselect is deactivated following the first 20 engine starts where engine and transmission communication are present. If during the first 20 starts the TCM recognizes an engine to be on its list of certified engines, it will lock to the SEM active state. If the engine is not supported, the TCM will lock to a non-SEM state.

NOTE: Most engine upgrades are same type/rating; under normal circumstances there should be no reason to reset the TCM Autoselect.

However, there may be a small chance that transmission performance, shift quality, or codes may result from the use of different models within the same engine family or when a recalibration of engine software has taken place. If a vehicle receives upgraded engine hardware or software it may become necessary to reactivate the Autoselect feature to redetect the engine current SEM status.

NOTE: Once TCM Autoselect locks, the only way to reactivate is to perform a reset procedure (refer to Paragraph 3–8).

3–8. RESETTING TCM AUTOSELECT

Verify a new engine rating by checking the engine data tag. The engine must be compatible with the transmission rating. If engine rating is not compatible, the vehicle must be returned to the OEM for engine recalibration. If the rating is correct for the transmission, perform the following steps.

Allison DOC™ for PC–Service Tool is used to reset Autoselect function as follows:

- Display the Action Request menu.
- On the drop down menu, select Reset SEM Autodetect.
- Click on the OK button.

The TCM is now reset to Autoselect and will start looking for supporting engine software. Drive the vehicle; confirm DTCs have not returned.

NOTE: Transmission shifts will now be in the unadaptive (base) state, so it will be necessary to drive the vehicle to allow shift to converge.
4–1. TESTING FOR OPENS, SHORTS BETWEEN WIRES, AND SHORTS-TO-GROUND
(Use Digital Volt/Ohmmeter J 34520-A and Jumper Wire Set J 39197)

NOTE: Please refer to Paragraph 3–5 to begin the troubleshooting process.

1. Make sure all connectors are tightly connected and re-test the circuit.
2. Disconnect and inspect all connectors.

3. Thoroughly clean corroded or dirty terminals. If dirty or corroded terminals are the probable cause of the problems, reconnect the clean connectors and operate the vehicle normally. If the problem recurs, proceed with Step (4).

The cleaning solvent must not be:
- Chlorine based
- Contain petroleum distillates
- Conduct electricity.

CAUTION: The cleaning solvent should evaporate quickly to prevent the possibility of condensation within the connectors. Always blow or shake any excess cleaner from the connector before assembling it to its mating connector or hardware. Cleaner trapped in the connector can affect the connector seal. Refer to SIL 17-TR-94, latest revision, for detailed information on the recommended cleaners.

5. If all connectors are clean and connected correctly, determine which wires in the chassis harness are indicated by the diagnostic code. For example, Code P0960, indicates an open in the pressure control solenoid circuit, wires 111 and 174.

 a. Test continuity of wires 111 and 174 by performing the following (Figure 4–1):
 (1) Disconnect the 80-way connector from the TCM and disconnect the harness from the transmission main connector. At one end of the harness, using jumper wire kit J 39197, connect wires 111 and 174 to each other, being careful not to distort the terminals. Jumpering the wires together creates a circuit between wires 111 and 174.

 CAUTION: Do not insert test probes larger than 0.81 mm into the TCM 80-way and transmission 20-way connectors. Use the gray-colored 150 Series Metripack Flexible Male Connector probe contained in Jumper Wire Kit J 39197 when testing the TCM and transmission mating connectors. Failure to do so may distort the socket terminals inside the connectors and cause them to lose the necessary tension to maintain firm contact.
WIRE TEST PROCEDURES

(2) On the opposite end of the harness, test the continuity of the jumpered pair. No continuity in a jumpered pair circuit (infinite resistance reading) indicates an open in the wire being tested. Locate and repair the damaged portion of the wire.

b. If the continuity test is good (0–2 Ohms resistance), remove the jumpers. Check the harness for shorts between wires and shorts-to-ground by performing the following (Figure 4–2):

(1) At the TCM end of the harness, touch one probe of a DVOM to one wire of the circuit being tested and touch the other probe to each terminal in the same connector, then touch the probe to chassis ground and to the transmission main housing. Do this for both wires in the circuit being tested.

(1) If at any time the DVOM shows zero to low resistance, or the meter’s continuity beeper sounds, there is a short between the two points being probed—wire-to-wire or wire-to-ground. Isolate and repair the short.

![Figure 4-1. Open Circuit](image1)

![Figure 4-2. Short Between Wires and to Ground](image2)
WIRE TEST PROCEDURES

4–2. TESTING AT TRANSMISSION FEEDTHROUGH CONNECTOR FOR INTERNAL HARNESS OPENS, SHORTS BETWEEN WIRES, AND SHORTS-TO-GROUND

1. Disconnect the external wiring harness from the transmission.
2. Inspect the connectors. Any terminals which are corroded or dirty must be thoroughly cleaned.

3. If the connectors are clean and connected correctly, determine which wires in the harness to test. Use the diagnostic code system schematic to locate the wire terminals. For this example, Code P0960 indicates an open in the Main Mod solenoid circuit, wires 111 and 174 (Figures 4–3 and 4–4).

 a. At the transmission connector, test the resistance of Main Mod solenoid circuit. Resistance of a solenoid circuit should be 4.0 to 7.8 Ohms, covering a temperature range of –20°C to 140°C (–4°F to 284°F). Refer to Solenoid Resistance vs. Temperature chart in Appendix K. No continuity in the circuit (infinite resistance) indicates an open in the internal harness, the feedthrough connector, or the solenoid coil. Locate and repair the open in the internal harness or replace the internal harness, replace the feedthrough connector, or the solenoid.

 The cleaning solvent must not be:
 - Chlorine based
 - Contain petroleum distillates
 - Conduct electricity.

 CAUTION: The cleaning solvent should evaporate quickly to prevent the possibility of condensation within the connectors. Always blow or shake any excess cleaner from the connector before assembling it to its mating connector or hardware. Cleaner trapped in the connector can affect the connector seal. Refer to SIL 17-TR-94, latest revision, for detailed information on the recommended cleaners.

 ![Diagram](image-url)

 Figure 4–3. Checking Continuity

 2–5 OHMS AT NORMAL OPERATING TEMPERATURE
 Circuit has continuity.
 * Refer to Appendix J

 INFINITE (∞) OHMS
 Circuit does not have continuity due to a broken wire (open circuit). DVOM reading is very high (infinite ohms or OL—overlimit). This could also be due to an open solenoid coil or bad connection.
b. If the resistance test is good, test the harness for shorts between wires and to ground by performing the following (Figure 4–4):

(1) At the transmission connector, touch one probe of the DVOM to one wire of the circuit being tested and touch the other probe to each terminal in the connector and to chassis ground and the transmission main housing. Do this for both wires in the circuit being tested.

(2) If the DVOM shows zero to low resistance, or the continuity beeper sounds, there is a short between the two points being probed, wire-to-wire or wire-to-ground. An indication of a short may be caused by a splice to the wire being checked. Review the wiring diagram in Appendix J for splice locations. If the short is not a splice, then isolate and repair the short.

Figure 4–4. Short Between Wires and to Ground

NOTE: When conducting circuit tests that include the external harness, add one (1) Ohm to the values shown. Speed sensor resistance is 270–330 Ohms. PSI diagnostic pressure switch resistance is two (2) Ohms maximum when switch is closed and 20,000 Ohms minimum when switch is open.
SECTION 5—OIL LEVEL SENSOR (OLS)

5–1. INTRODUCTION

The oil level sensor (Figure 5–1) provides a means of electronically checking the transmission fluid level from:

- The shift selector display
- Allison DOC™ For PC–Service Tool
- A customer-furnished remote display.

The Allison 4th Generation Controls oil level sensor (OLS) is a one-piece unit with a molded 3-terminal connector built into the sensor housing (see Figure 5–1 and SIL 19-WT-99 for more details). The internal wiring harnesses have been designed to include the 3-terminal connector for the OLS.

NOTE: The OLS is standard on all 3000 and 4000 Product Families transmissions except 3000 Product Family 7-speed transmissions.

Figure 5–2 shows the position and orientation of the OLS on the control modules of the 3000 and 4000 Product Families transmissions. The OLS must be correctly positioned so the internal harness connector reaches the connector on the sensor. The control module must fit onto the transmission main case without interference. The one piece design reduces the complexity of the manufacturing and installation of the sensor. The current OLS uses shoulder bolts and Viton® ferrules to provide vibration dampening in the mounting.
OIL LEVEL SENSOR (OLS)

Figure 5–2. Current Oil Level Sensor Orientation
NOTE: The pushbutton and lever shift selectors can display two characters at a time. The strip pushbutton shift selector does not have diagnostic or display capability. Allison DOC™ For PC–Service Tool or a customer-furnished remote display must be used to obtain fluid level information when using the strip pushbutton shift selector.

A. Fluid Level Reading Procedure

1. Park the vehicle on a level surface and shift to N (Neutral). Apply the parking brake.
2. On the Pushbutton shift selector, simultaneously press the ↑↑↑↑ (Up) and ↓↓↓↓ (Down) arrow buttons once.
3. On the Lever shift selector, press the “display mode” button once.
4. For a strip pushbutton shift selector, refer to Allison publication GN3433EN, User Guide for Allison DOC™ For PC–Service Tool.

NOTE: The TCM may delay the fluid level reading until the following conditions are met:

• The fluid temperature is between 60°C (140°F) and 104°C (220°F).
• The transmission is in N (Neutral).
• The vehicle has been stationary for approximately two minutes to allow the fluid to settle.
• The engine is at idle (below 1000 rpm—not “fast” idle).

See “Invalid for Display” information in Steps (8) and (9).

5. Correct fluid level is reported when o L is displayed (o L indicates the Oil Level Check Mode), followed by o K. The o K display indicates the fluid level is within the proper fluid level zone. The sensor display and the transmission dipstick may not agree exactly because the oil level sensor compensates for fluid temperature.

Example: o L; o K—Indicates correct fluid level.

6. Low fluid level is reported when o L is displayed, followed by L o and a number. L o indicates a low fluid level and the number is the number of quarts of fluid the transmission requires.

Example: o L; L o; 2—Indicates two (2) additional quarts of fluid will bring the fluid level within the proper fluid level.
OIL LEVEL SENSOR (OLS)

7. High fluid level is reported when oL is displayed, followed by HI and a number. HI indicates high fluid level and the number shows how many quarts the transmission is overfilled.

Example: oL, HI, 1—Indicates one quart of fluid above the full level.

8. An Invalid for Display condition is reported when oL is displayed, followed by “—” and a number display. The displayed number is a fault code and indicates improper conditions or a system malfunction.

Example: oL, —, 70—Indicates an Invalid for Display condition and fault code 70.

9. Invalid for Display is activated when conditions do not allow the fluid level to be checked electronically. Review the following codes and conditions, and correct as necessary.

Table 5–1. Invalid for Display Codes

<table>
<thead>
<tr>
<th>CODE</th>
<th>CAUSE OF CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X*</td>
<td>Settling time too short</td>
</tr>
<tr>
<td>50</td>
<td>Engine speed (rpm) too low</td>
</tr>
<tr>
<td>59</td>
<td>Engine speed (rpm) too high</td>
</tr>
<tr>
<td>65</td>
<td>N (Neutral) must be selected</td>
</tr>
<tr>
<td>70</td>
<td>Sump fluid temperature too low</td>
</tr>
<tr>
<td>79</td>
<td>Sump fluid temperature too high</td>
</tr>
<tr>
<td>89</td>
<td>Output shaft rotation</td>
</tr>
<tr>
<td>95</td>
<td>Sensor failure**</td>
</tr>
</tbody>
</table>

* A number between 8 and 1 that flashes during the countdown period.
** Speed sensor, throttle sensor, temperature sensor, or oil level sensor.

10. To exit the fluid level display mode:

- Pushbutton shift selector—press the N (Neutral) pushbutton or press ↑ (Up) and ↓ (Down) arrow pushbuttons simultaneously two times.
- Lever shift selector—press the “DISPLAY MODE” button two times or move the lever.
5–3. ELECTRONIC FLUID LEVEL READING (ALLISON DOC™ FOR PC–SERVICE TOOL)

Allison DOC™ For PC–Service Tool can also be used to electronically read the transmission’s fluid level (refer to Allison publication GN3433EN, User Guide for Allison DOC™ For PC–Service Tool for further information).

CAUTION: A low or high fluid level causes overheating and irregular shift patterns and, if not corrected, can damage the transmission.

A. Fluid Level Check Procedure

1. Connect the Allison DOC™ For PC–Service Tool to the diagnostic tool connector (Figure 1–2).
2. Select Diagnostic button.
3. Scroll down the Diagnostic Data List to “Custom Data Monitor” display.
4. Select “oil level deviation.”
5. Read the fluid level deviation, repeat the reading to confirm the first reading.

NOTE: The TCM may delay the fluid level reading until the following conditions are met:

• The fluid temperature is between 60°C (140°F) and 104°C (220°F).
• The transmission is in N (Neutral).
• The vehicle has been stationary for approximately two minutes to allow the fluid to settle.
• The engine is at idle.

The reason for a delayed fluid level reading is indicated on the Allison DOC™ For PC–Service Tool by one of the following diagnostic messages.

Table 5–2. Diagnostic Message

<table>
<thead>
<tr>
<th>O L — SETTLING TIME (8 down to 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O L — ENGINE SPEED LO</td>
</tr>
<tr>
<td>O L — ENGINE SPEED HI</td>
</tr>
<tr>
<td>O L — SELECT N (NEUTRAL)</td>
</tr>
<tr>
<td>O L — SUMP TEMP LO</td>
</tr>
<tr>
<td>O L — SUMP TEMP HI</td>
</tr>
<tr>
<td>O L — OUTPUT SPEED HI</td>
</tr>
<tr>
<td>O L — CHECK CODES</td>
</tr>
</tbody>
</table>

Copyright © 2005 General Motors Corp. 5–5
6–1. DIAGNOSTIC CODE MEMORY

Diagnostic codes are logged in a list in memory (sometimes referred to as the queue), listing the most recently occurring code first and logging all active and inactive codes. The codes contained in the list have information recorded as shown in the table below (codes are examples). Access to the code list position, DTC, and active indicator is through the shift selector display. The shift selector will display only five codes, beginning with the most recent active followed by the most recent inactive DTCs. Access to DTC, Active indicator, Historic indicator, Check Trans indicator, Failure Record indicator, and Description is through the Allison DOC™ For PC–Service Tool. Further details on the use of the Allison DOC™ For PC–Service Tool are presented in GN3433EN User Guide furnished with each tool.

The following paragraphs define the different parts of the code list.

A. **Code List Position (shift selector only).** The position which a code occupies in the code list. Positions are displayed as “d1” through “d5” (Code List Position 1 through Code List Position 5).

B. **DTC.** The diagnostic trouble code number referring to the general condition or area of fault detected by the TCM. “Double click” on the numerical code in the DTC column to link to the specific troubleshooting instructions for the DTC.

C. **Active Indicator.** Indicates when a diagnostic code is active. The MODE indicator LED on the shift selector is illuminated or the diagnostic tool displays Y when DTC is active.

D. **Historic Indicator.** Indicates when the DTC has met sufficient criteria to be stored in long term memory. “Sufficient criteria” may mean the DTC occurred over a specific span of time or over multiple test cycles.

E. **Check Trans Indicator.** Indicates when the TCM is requesting the CHECK TRANS light as a result of the DTC.

F. **Failure Records Indicator.** Indicates when Failure Records are present. “Double click” on Y in the Failure Records column to display failure record information.

G. **Description.** Provides a brief description of the DTC. “Double click” on the DTC description to link to the specific troubleshooting instructions for the DTC.
6–2. CODE READING AND CODE CLEARING

Diagnostic codes can be read and cleared by the following methods:

- Allison DOC™ For PC–Service Tool.
- Diagnostic display mode on the shift selector.

The use of Allison DOC™ For PC–Service Tool is described in Allison publication GN3433EN, User Guide, that is furnished with each tool. The method of reading and clearing codes described in this section refers to entering the diagnostic display mode of the shift selector.

The diagnostic display mode may be entered for viewing of codes at any speed. Active codes can only be cleared when the output speed = 0 and no output speed sensor failure is active.

A. Reading Codes. Enter the diagnostic display mode by pressing the \(\uparrow \uparrow \uparrow \uparrow \) (Up) and \(\downarrow \downarrow \downarrow \downarrow \) (Down) arrow buttons at the same time on a pushbutton selector, or by momentarily pressing the MODE button on a lever shift selector.

NOTE: If a DO NOT SHIFT condition is present (CHECK TRANS light illuminated) at this time, the shift selector may or may not respond to requested range changes.

NOTE: If an oil level sensor is present, then fluid level will be displayed first. Diagnostic code display is achieved by simultaneously depressing the \(\uparrow \) (Up) and \(\downarrow \) (Down) arrow buttons a second time or the MODE button a second time.

The code list or queue position is the first item displayed, followed by the DTC. Each item is displayed for about one second. The display cycles continuously until the next code list position is accessed by pressing the MODE button. The following example shows how DTC C1312 is displayed on the pushbutton and lever shift selectors:

<table>
<thead>
<tr>
<th>SELECT</th>
<th>MONITOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

To view the second, third, fourth, and fifth positions (d2, d3, d4, and d5), momentarily press the MODE button as explained above.

Momentarily press the MODE button after the fifth position is displayed to restart the sequence of code list positions.

An active code is indicated by the illumination of the LED indicator when a code position is displayed while in the diagnostic display mode. In the normal operating mode, the LED indicator illuminates to show a secondary mode operation.

Any code position which does not have a diagnostic code logged will display “–” for the DTC. No diagnostic codes are logged after an empty code position.

B. Clearing Active Indicators. A diagnostic code’s active indicator can be cleared, which allows the code inhibit to be cleared but remains in the queue as inactive.

The active indicator clearing methods are:

1. Power down—All active indicators are cleared at TCM power down.
DIAGNOSTIC TROUBLE CODES (DTC)

2. Self-clearing—Some codes will clear their active indicator when the condition causing the code is no longer detected by the TCM.

3. Manual—Some active indicators can be cleared manually, while in the diagnostic display mode, after the condition causing the code is corrected.

C. Manually Clearing Codes and Active Indicators from the Code List. To clear active indicators or all codes:

1. Enter the diagnostic display mode.
2. Press and hold the MODE button for approximately ten seconds until the LED indicator flashes. All active and inactive indicators are cleared. All active indicators will be cleared at TCM power down.
3. Codes that cannot be manually cleared will remain.

D. Exiting the diagnostic display mode. Exit the diagnostic display mode using one of the following procedures:

1. On a pushbutton shift selector, press the ↑ (Up) and ↓ (Down) arrow buttons at the same time or press any range button, D, N, or R. The shift (D, N, or R) is commanded if not inhibited by an active code.
2. On a lever shift selector, momentarily press the MODE button or move the shift lever to any shift position other than the one it was in when the diagnostic display mode was activated. If the shift is inhibited, the TCM will continue to command the current transmission range attained and the lever should be returned to its original position.
3. Wait until timeout (approximately 10 minutes) and the system will automatically return to the normal operating mode.
4. Turn off power to the TCM (turn off the vehicle engine at the ignition switch).

6–3. DIAGNOSTIC CODE RESPONSE

The following TCM responses to a fault provide for safe transmission operation:

- Do Not Shift (DNS) Response
 — Release lockup clutch and inhibit lockup operation.
 — Inhibit all shifts.
 — Turn on the CHECK TRANS light.
 — Display the range attained.
 — Ignore any range selection inputs from the pushbutton or lever shift selector.
- Do Not Adapt (DNA) Response
 — The TCM stops adaptive shift control while the code is active. Do not adapt shifts when a code with the DNA response is active.

CAUTION: If an active indicator is cleared while the transmission is locked in a forward range or reverse (fail-to-range), the transmission will remain in the forward range or reverse after the clearing procedure is completed. Neutral must be manually selected.
DIAGNOSTIC TROUBLE CODES (DTC)

- **SOLeonid OFF** (SOL OFF) Response
 - All solenoids are commanded off (turning solenoids PCS1 and PCS2 off electrically causes them to be on hydraulically).

- **Return to Previous Range** (RPR) Response
 - When the speed sensor ratio or PS1 pressure switch tests associated with a shift are not successful, the TCM commands the same range as commanded before the shift.

- **Neutral No Clutches** (NNC) Response
 - When certain speed sensor ratio or PS1 pressure switch tests are not successful, the TCM commands a neutral condition with no clutches applied.

6–4. **SHIFT SELECTOR DISPLAYS RELATED TO ACTIVE CODES**

- “Cateye”—The forward slash segment and the middle horizontal segments (-/-) may be on under the following conditions:
 - Lost communication between the TCM and shift selector (U0103 or U0291)
 - J1939 Controlled Area Network (CAN) problems
 - Invalid data from shift selector (U0592 or U0404)
- All Segments Displayed—All display segments will be illuminated during shift selector initialization. Low supply voltage can cause the shift selector to fail to complete initialization.

6–5. **DIAGNOSTIC CODE LIST AND DESCRIPTION**

<table>
<thead>
<tr>
<th>DTC</th>
<th>Description</th>
<th>CHECK TRANS Light</th>
<th>Inhibited Operation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1312</td>
<td>Retarder Request Sensor Failed Low</td>
<td>No</td>
<td>May inhibit retarder operation if not using J1939 datalink</td>
</tr>
<tr>
<td>C1313</td>
<td>Retarder Request Sensor Failed High</td>
<td>No</td>
<td>May inhibit retarder operation if not using J1939 datalink</td>
</tr>
<tr>
<td>P0122</td>
<td>Pedal Position Sensor Low Voltage</td>
<td>No</td>
<td>Use default throttle values. Freezes shift adapts.</td>
</tr>
<tr>
<td>P0123</td>
<td>Pedal Position Sensor High Voltage</td>
<td>No</td>
<td>Use default throttle values. Freezes shift adapts.</td>
</tr>
<tr>
<td>P0218</td>
<td>Transmission Fluid Over Temperature</td>
<td>No</td>
<td>Use hot mode shift schedule. Holds fourth range. TCC is inhibited. Freezes shift adapts.</td>
</tr>
<tr>
<td>P0602</td>
<td>TCM Not Programmed</td>
<td>Yes</td>
<td>Lock in Neutral</td>
</tr>
<tr>
<td>P0610</td>
<td>TCM Vehicle Options (TransID) Error</td>
<td>Yes</td>
<td>Use TID A calibration</td>
</tr>
<tr>
<td>P0613</td>
<td>TCM Processor</td>
<td>No</td>
<td>All solenoids off</td>
</tr>
<tr>
<td>P0614</td>
<td>Torque Control Data Mismatch—ECM/TCM</td>
<td>Yes</td>
<td>Allows operation only in reverse and second range.</td>
</tr>
<tr>
<td>P0634</td>
<td>TCM Internal Temperature Too High</td>
<td>Yes</td>
<td>SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P063E</td>
<td>Auto Configuration Throttle Input Not Present</td>
<td>Yes</td>
<td>Use default throttle values</td>
</tr>
</tbody>
</table>
Table 6–2. Diagnostic Troubleshooting Codes (DTC) and Descriptions (cont’d)

<table>
<thead>
<tr>
<th>DTC</th>
<th>Description</th>
<th>CHECK TRANS Light</th>
<th>Inhibited Operation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P063F</td>
<td>Auto Configuration Engine Coolant Temp Input Not Present</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>P0658</td>
<td>Actuator Supply Voltage 1 (HSD1) Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0659</td>
<td>Actuator Supply Voltage 1 (HSD1) High</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0702</td>
<td>Transmission Control System Electrical (TransID)</td>
<td>Yes</td>
<td>Uses TID A calibration</td>
</tr>
<tr>
<td>P0703</td>
<td>Brake Switch Circuit Malfunction</td>
<td>No</td>
<td>No Neutral to Drive shifts for refuse packer. TCM inhibits retarder operation if a TPS code is also active.</td>
</tr>
<tr>
<td>P0708</td>
<td>Transmission Range Sensor Circuit High Input</td>
<td>Yes</td>
<td>Ignore defective strip selector inputs</td>
</tr>
<tr>
<td>P070C</td>
<td>Transmission Fluid Level Sensor Circuit—Low Input</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>P070D</td>
<td>Transmission Fluid Level Sensor Circuit—High Input</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>P0711</td>
<td>Transmission Fluid Temperature Sensor Circuit Performance</td>
<td>Yes</td>
<td>Use default sump temp</td>
</tr>
<tr>
<td>P0712</td>
<td>Transmission Fluid Temperature Sensor Circuit Low Input</td>
<td>Yes</td>
<td>Use default sump temp</td>
</tr>
<tr>
<td>P0713</td>
<td>Transmission Fluid Temperature Sensor Circuit High Input</td>
<td>Yes</td>
<td>Use default sump temp</td>
</tr>
<tr>
<td>P0716</td>
<td>Turbine Speed Sensor Circuit Performance</td>
<td>Yes</td>
<td>DNS, Lock in current range</td>
</tr>
<tr>
<td>P0717</td>
<td>Turbine Speed Sensor Circuit No Signal</td>
<td>Yes</td>
<td>DNS, Lock in current range</td>
</tr>
<tr>
<td>P0719</td>
<td>Brake Switch ABS Input Low</td>
<td>No</td>
<td>TCM assumes ABS is OFF</td>
</tr>
<tr>
<td>P071A</td>
<td>RELS Input Failed On</td>
<td>Yes</td>
<td>Inhibit RELS operation</td>
</tr>
<tr>
<td>P071D</td>
<td>General Purpose Input Fault</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>P0721</td>
<td>Output Speed Sensor Circuit Performance</td>
<td>Yes</td>
<td>DNS, Lock in current range</td>
</tr>
<tr>
<td>P0722</td>
<td>Output Speed Sensor Circuit No Signal</td>
<td>Yes</td>
<td>DNS, Lock in current range</td>
</tr>
<tr>
<td>P0726</td>
<td>Engine Speed Sensor Circuit Performance</td>
<td>No</td>
<td>Default to turbine speed</td>
</tr>
<tr>
<td>P0727</td>
<td>Engine Speed Sensor Circuit No Signal</td>
<td>No</td>
<td>Default to turbine speed</td>
</tr>
<tr>
<td>P0729</td>
<td>Incorrect 6th Gear Ratio</td>
<td>Yes</td>
<td>DNS, Attempt 5th, then 3rd</td>
</tr>
<tr>
<td>P0731</td>
<td>Incorrect 1st Gear Ratio</td>
<td>Yes</td>
<td>DNS, Attempt 2nd, then 5th</td>
</tr>
<tr>
<td>P0732</td>
<td>Incorrect 2nd Gear Ratio</td>
<td>Yes</td>
<td>DNS, Attempt 3rd, then 5th</td>
</tr>
<tr>
<td>P0733</td>
<td>Incorrect 3rd Gear Ratio</td>
<td>Yes</td>
<td>DNS, Attempt 4th, then 6th</td>
</tr>
<tr>
<td>P0734</td>
<td>Incorrect 4th Gear Ratio</td>
<td>Yes</td>
<td>DNS, Attempt 5th, then 3rd</td>
</tr>
<tr>
<td>P0735</td>
<td>Incorrect 5th Gear Ratio</td>
<td>Yes</td>
<td>DNS, Attempt 6th, then 3rd, then 2nd</td>
</tr>
<tr>
<td>P0736</td>
<td>Incorrect Reverse Gear Ratio</td>
<td>Yes</td>
<td>DNS, Lock in Neutral</td>
</tr>
<tr>
<td>P0741</td>
<td>Torque Converter Clutch System Stuck Off</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>P0776</td>
<td>Pressure Control Solenoid 2 Stuck Off</td>
<td>Yes</td>
<td>DNS, RPR</td>
</tr>
<tr>
<td>P0777</td>
<td>Pressure Control Solenoid 2 Stuck On</td>
<td>Yes</td>
<td>DNS, RPR</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

Table 6–2. Diagnostic Troubleshooting Codes (DTC) and Descriptions (cont’d)

<table>
<thead>
<tr>
<th>DTC</th>
<th>Description</th>
<th>CHECK TRANS Light</th>
<th>Inhibited Operation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0796</td>
<td>Pressure Control Solenoid 3 Stuck Off</td>
<td>Yes</td>
<td>DNS, RPR</td>
</tr>
<tr>
<td>P0797</td>
<td>Pressure Control Solenoid 3 Stuck On</td>
<td>Yes</td>
<td>DNS, RPR</td>
</tr>
<tr>
<td>P0842</td>
<td>Transmission Pressure Switch 1 Circuit Low</td>
<td>Yes</td>
<td>DNS, Lock in current range</td>
</tr>
<tr>
<td>P0843</td>
<td>Transmission Pressure Switch 1 Circuit High</td>
<td>Yes</td>
<td>DNS, Lock in current range</td>
</tr>
<tr>
<td>P0880</td>
<td>TCM Power Input Signal</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>P0881</td>
<td>TCM Power Input Signal Performance</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>P0882</td>
<td>TCM Power Input Signal Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0883</td>
<td>TCM Power Input Signal High</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>P0894</td>
<td>Transmission Component Slipping</td>
<td>Yes</td>
<td>DNS, Lock in first</td>
</tr>
<tr>
<td>P0960</td>
<td>Pressure Control Solenoid Main Mod Control Circuit Open</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>P0962</td>
<td>Pressure Control Solenoid Main Mod Control Circuit Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0963</td>
<td>Pressure Control Solenoid Main Mod Control Circuit High</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>P0964</td>
<td>Pressure Control Solenoid 2 (PCS2) Control Circuit Open</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0966</td>
<td>Pressure Control Solenoid 2 (PCS2) Control Circuit Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0967</td>
<td>Pressure Control Solenoid 2 (PCS2) Control Circuit High</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0968</td>
<td>Pressure Control Solenoid 3 (PCS3) Control Circuit Open</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0970</td>
<td>Pressure Control Solenoid 3 (PCS3) Control Circuit Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0971</td>
<td>Pressure Control Solenoid 3 (PCS3) Control Circuit High</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0973</td>
<td>Shift Solenoid 1 (SS1) Control Circuit Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0974</td>
<td>Shift Solenoid 1 (SS1) Control Circuit High</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P0975</td>
<td>Shift Solenoid 2 (SS2) Control Circuit Open</td>
<td>Yes</td>
<td>7-speed: Allow 2 through 6, N, R</td>
</tr>
<tr>
<td>P0976</td>
<td>Shift Solenoid 2 (SS2) Control Circuit Low</td>
<td>Yes</td>
<td>7-speed: Allow 2 through 6, N, R. Inhibit TCC operation</td>
</tr>
<tr>
<td>P0977</td>
<td>Shift Solenoid 2 (SS2) Control Circuit High</td>
<td>Yes</td>
<td>7-speed: Allow 2 through 6, N, R</td>
</tr>
<tr>
<td>P0989</td>
<td>Retarder Pressure Sensor Failed Low</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>P0990</td>
<td>Retarder Pressure Sensor Failed High</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>P1739</td>
<td>Incorrect Low Gear Ratio</td>
<td>Yes</td>
<td>Command 2nd and allow shifts 2 through 6, N, R</td>
</tr>
<tr>
<td>P1891</td>
<td>Throttle Position Sensor PWM Signal Low Input</td>
<td>No</td>
<td>Use default throttle values</td>
</tr>
<tr>
<td>P1892</td>
<td>Throttle Position Sensor PWM Signal High Input</td>
<td>No</td>
<td>Use default throttle values</td>
</tr>
<tr>
<td>P2184</td>
<td>Engine Coolant Temperature Sensor Circuit Low Input</td>
<td>No</td>
<td>Use default engine coolant values</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

Table 6–2. Diagnostic Troubleshooting Codes (DTC) and Descriptions (cont’d)

<table>
<thead>
<tr>
<th>DTC</th>
<th>Description</th>
<th>CHECK TRANS Light</th>
<th>Inhibited Operation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2185</td>
<td>Engine Coolant Temperature Sensor Circuit High Input</td>
<td>No</td>
<td>Use default engine coolant values</td>
</tr>
<tr>
<td>P2637</td>
<td>Torque Management Feedback Signal (SEM) Yes Inhibit SEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2641</td>
<td>Torque Management Feedback Signal (LRTP) Yes Inhibit LRTP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2670</td>
<td>Actuator Supply Voltage 2 (HSD2) Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2671</td>
<td>Actuator Supply Voltage 2 (HSD2) High</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2685</td>
<td>Actuator Supply Voltage 3 (HSD3) Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2686</td>
<td>Actuator Supply Voltage 3 (HSD3) High</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2714</td>
<td>Pressure Control Solenoid 4 (PCS4) Stuck Off</td>
<td>Yes</td>
<td>DNS, RPR</td>
</tr>
<tr>
<td>P2715</td>
<td>Pressure Control Solenoid 4 (PCS4) Stuck On</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2718</td>
<td>Pressure Control Solenoid 4 (PCS4) Control Circuit Open</td>
<td></td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2720</td>
<td>Pressure Control Solenoid 4 (PCS4) Control Circuit Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2721</td>
<td>Pressure Control Solenoid 4 (PCS4) Control Circuit High</td>
<td></td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2723</td>
<td>Pressure Control Solenoid 1 (PCS1) Stuck Off</td>
<td>Yes</td>
<td>DNS, RPR</td>
</tr>
<tr>
<td>P2724</td>
<td>Pressure Control Solenoid 1 (PCS1) Stuck On</td>
<td>Yes</td>
<td>DNS, RPR</td>
</tr>
<tr>
<td>P2727</td>
<td>Pressure Control Solenoid 1 (PCS1) Control Circuit Open</td>
<td></td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2729</td>
<td>Pressure Control Solenoid 1 (PCS1) Control Circuit Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2730</td>
<td>Pressure Control Solenoid 1 (PCS1) Control Circuit High</td>
<td></td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2736</td>
<td>Pressure Control Solenoid 5 (PCS5) Control Circuit Open</td>
<td></td>
<td>Inhibit retarder operation</td>
</tr>
<tr>
<td>P2738</td>
<td>Pressure Control Solenoid 5 (PCS5) Control Circuit Low</td>
<td>Yes</td>
<td>Allow 2 through 6, N, R. Inhibit retarder and TCC operation</td>
</tr>
<tr>
<td>P2739</td>
<td>Pressure Control Solenoid 5 (PCS5) Control Circuit High</td>
<td>Yes</td>
<td>Inhibit retarder operation</td>
</tr>
<tr>
<td>P2740</td>
<td>Retarder Oil Temperature Hot</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>P2742</td>
<td>Retarder Oil Temperature Sensor Circuit—Low Input</td>
<td>No</td>
<td>Use default retarder temp values</td>
</tr>
<tr>
<td>P2743</td>
<td>Retarder Oil Temperature Sensor Circuit—High Input</td>
<td>No</td>
<td>Use default retarder temp values</td>
</tr>
<tr>
<td>P2761</td>
<td>TCC PCS Control Circuit Open</td>
<td>Yes</td>
<td>Inhibit TCC operation</td>
</tr>
<tr>
<td>P2763</td>
<td>TCC PCS Control Circuit High</td>
<td>Yes</td>
<td>Inhibit TCC operation</td>
</tr>
<tr>
<td>P2764</td>
<td>TCC PCS Control Circuit Low</td>
<td>Yes</td>
<td>7-speed: allow 2 through 6, N, R. Inhibit TCC operation</td>
</tr>
<tr>
<td>P278A</td>
<td>Kickdown Input Failed ON</td>
<td>No</td>
<td>Inhibit kickdown operation</td>
</tr>
<tr>
<td>P2793</td>
<td>Gear Shift Direction Circuit</td>
<td>Yes</td>
<td>Ignores PWM input from shift selector</td>
</tr>
<tr>
<td>P2808</td>
<td>Pressure Control Solenoid 6 (PCS6) Stuck Off</td>
<td>Yes</td>
<td>DNS, RPR</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

Table 6-2. Diagnostic Troubleshooting Codes (DTC) and Descriptions (cont'd)

<table>
<thead>
<tr>
<th>DTC</th>
<th>Description</th>
<th>CHECK TRANS Light</th>
<th>Inhibited Operation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2809</td>
<td>Pressure Control Solenoid 6 (PCS6) Stuck On</td>
<td>Yes</td>
<td>DNS, RPR</td>
</tr>
<tr>
<td>P2812</td>
<td>Pressure Control Solenoid 6 (PCS6) Control Circuit Open</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2814</td>
<td>Pressure Control Solenoid 6 (PCS6) Control Circuit Low</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>P2815</td>
<td>Pressure Control Solenoid 6 (PCS6) Control Circuit High</td>
<td>Yes</td>
<td>DNS, SOL OFF (hydraulic default)</td>
</tr>
<tr>
<td>U0001</td>
<td>Hi Speed CAN Bus Reset Counter Overrun (IESCAN)</td>
<td>No</td>
<td>Use default values, inhibit SEM</td>
</tr>
<tr>
<td>U0010</td>
<td>CAN BUS Reset Counter Overrun</td>
<td>No</td>
<td>Use default values, inhibit SEM</td>
</tr>
<tr>
<td>U0100</td>
<td>Lost Communications with ECM/PCM (J1587)</td>
<td>Yes</td>
<td>Use default values</td>
</tr>
<tr>
<td>U0103</td>
<td>Lost Communication With Gear Shift Module (Shift Selector) 1</td>
<td>Yes</td>
<td>Maintain range selected, observe gear shift direction circuit</td>
</tr>
<tr>
<td>U0115</td>
<td>Lost Communication With ECM</td>
<td>Yes</td>
<td>Use default values</td>
</tr>
<tr>
<td>U0291</td>
<td>Lost Communication With Gear Shift Module (Shift Selector) 2</td>
<td>Yes</td>
<td>Maintain range selected, observe gear shift direction circuit</td>
</tr>
<tr>
<td>U0304</td>
<td>Incompatible Gear Shift Module 1 (Shift Selector) ID</td>
<td>Yes</td>
<td>Ignore shift selector inputs</td>
</tr>
<tr>
<td>U0333</td>
<td>Incompatible Gear Shift Module 2 (Shift Selector) ID</td>
<td>Yes</td>
<td>Ignore shift selector inputs</td>
</tr>
<tr>
<td>U0404</td>
<td>Invalid Data Received From Gear Shift Module (Shift Selector) 1</td>
<td>Yes</td>
<td>Maintain range selected, observe gear shift direction circuit</td>
</tr>
<tr>
<td>U0592</td>
<td>Invalid Data Received From Gear Shift Module (Shift Selector) 2</td>
<td>Yes</td>
<td>Maintain range selected, observe gear shift direction circuit</td>
</tr>
</tbody>
</table>
TRANSMISSION
COMPONENT
WIRING DIAGRAMS
AND
DIAGNOSTICS
Figure 6–1. J 39700 Breakout Box and J 47275 TCM Breakout Harness Adapter
DIAGNOSTIC TROUBLE CODES (DTC)

Figure 6–2. J 39700 Breakout Box and J 47279 Transmission Breakout Harness

*NOTE: 4000 Product Family
Figure 6–3. J 47276 “T” Breakout and TCM Reflashing Harness
DIAGNOSTIC TROUBLE CODES (DTC)

6–6. DIAGNOSTIC CODE TROUBLESHOOTING

A. Beginning The Troubleshooting Process

1. Begin troubleshooting by determining the transmission fluid level and TCM input voltage. Access diagnostic codes by using:
 • The shift selector display.
 • Allison DOC™ For PC–Service Tool.

2. When a problem exists but a diagnostic code is not indicated, refer to Section 8, General Troubleshooting of Performance Complaints for a listing of various electrical and hydraulic problems, their causes, and remedies.

3. If a diagnostic code is found in the TCM memory, record all available code information and clear the active indicator. Read TCM freeze frame data using Allison DOC™ For PC–Service Tool. Refer to Section 6–2.

4. Test drive the vehicle to confirm a diagnostic code or performance complaint.
 • If the code reappears, refer to Section 6–5, Table 6–2. Table 6–2 lists diagnostic codes and their description.
 • If the code does not reappear, it may be an intermittent problem. Use Allison DOC™ For PC–Service Tool or the code display procedure described in Section 6–2.
 • The code display procedure will indicate the number of times the diagnostic code has occurred. Refer to Section 8, General Troubleshooting of Performance Complaints, for the possible cause(s) of the problem.
 • Use pressure gauges as necessary to evaluate hydraulic conditions.
 • Appendix A deals with the identification of potential circuit problems. Refer to Appendix A if a circuit problem is suspected.

5. If difficulties arise, you have unanswered questions, or if you are unable to quickly identify the root cause during troubleshooting, please contact the Technical Assistance Center (TAC):

Technical Assistance Center
PO Box 894, Mail Code 462-470-PF9
Indianapolis, IN 46206-0894
Phone: 1-800-252-5283

NOTE: Information concerning specific items is contained in the appendices located in the back of this manual. The appendices are referred to throughout the manual.

B. Solenoid Locations

Solenoid locations in the control module are as illustrated in Figure 6–3. Refer to Figure 6–3 as necessary when using the diagnostic code schematics.

C. Diagnostic Code Schematics

The diagnostic code schematics in this section show wiring for both the optional oil level sensor and retarder, where applicable. If your transmission is not equipped with an oil level sensor or retarder, disregard the portions of the schematic pertaining to those optional pieces of equipment. Refer to the appropriate transmission service manual for solenoid replacement procedures.
Figure 6-4. Control Module Solenoid Location
DIAGNOSTIC TROUBLE CODES (DTC)

DTC C1312 Retarder Request Sensor Failed Low

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

OIL LEVEL

PS1

SUMP TEMP

PS1 DIAGNOSTIC PRESSURE SWITCH

5V SENSOR VOLTAGE

THROTTLE POSITION OR RTDR PRESSURE SIGNAL

ANALOG RETURN

RETARDER TEMP

ENGINE TEMP

ENGINE WATER TEMP

OIL LEVEL SENSOR

SUMP TEMP

* NORMALLY CLOSED

* NORMALLY CLOSED

TCM

V09069.01.00
DIAGNOSTIC TROUBLE CODES (DTC)

DTC C1312 Retarder Request Sensor Failed Low

Circuit Description
The Transmission Control Module (TCM) can be calibrated to receive a retarder request signal from a retarder request sensor, sometimes called a resistance module. The TCM is connected to the retarder request sensor by:

- a reference voltage wire,
- retarder request signal wire, and
- analog ground wire.

The TCM provides a 5V reference voltage to the retarder request sensor. A voltage divider network in the sensor produces a retarder request signal in response to inputs from the retarder control device(s). The TCM interprets this signal as a percent retarder requested.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- The components are powered and engine speed is greater than 200 rpm and less than 7500 rpm.

Conditions for Setting the DTC
DTC C1312 sets if the TCM is calibrated to receive the retarder request signal, and the signal voltage is less than 0.3V for five seconds.

Actions Taken When the DTC Sets
When DTC C1312 is active, the following conditions will occur:

- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.
- TCM may inhibit retarder operation, if not using the J1939 Datalink for retarder request signal.

Conditions for Clearing DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC C1312 indicates the TCM has detected a voltage signal from the retarder request sensor in the low error zone. The code can be caused by:
 - Faulty wiring.
 - Faulty connections to the retarder request sensor or retarder control device.
 - A faulty retarder request sensor (resistance module).
 - A faulty retarder control device.
 - A faulty TCM.

- DTC C1312 can be caused by an open or short-to-ground in either the 5V reference wire 112 or retarder request signal wire 156. The retarder request sensor shares a common 5V reference voltage with the transmission oil level sensor (OLS) and throttle position sensor (TPS) on wire 112. An open or short-to-ground in the common 5V reference causes a “sensor failed low” code for the other devices as well. An open or short-to-ground on wire 156 will cause a DTC C1312 only.
DIAGNOSTIC TROUBLE CODES (DTC)

• Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for an active DTC.
3. This step tests for defective wiring in external harness.
5. This step tests for retarder request sensor functionality.
6. This step tests for proper 5V reference voltage at the TCM with OEM harness disconnected.

DTC C1312 Retarder Request Sensor Failed Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Clear the DTC and drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC indicates that the retarder request sensor voltage is below a set voltage for a set period of time. It may also indicate an open or short-to-ground in either the 5V reference wire 112 or retarder request signal wire 156.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC C1312 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Step 5</td>
</tr>
<tr>
<td></td>
<td>2. Inspect the routing of 5V reference wire 112, retarder request signal wire 156, and analog return (ground) wire 158 between the TCM and the retarder request sensor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Disconnect the 80-way connector from the TCM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Install the OEM-side of the 80-way connector to J 47275 TCM Breakout. Leave the TCM disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Disconnect the transmission 20-way connector, RMR connector, and TPS connector, if installed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Test for opens or shorts-to-ground on wires 112 and 156.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Was chafing or wire damage found?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC C1312 Retarder Request Sensor Failed Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1. Turn OFF the ignition. 2. Reconnect the TCM to J 47275 TCM Breakout. 3. Reconnect the RMR connector, transmission 20-way connector, and TPS connector, if installed. 4. Turn ON the ignition. 5. At J 47275-1 TCM overlay, connect a DVOM and measure voltage between pins 56 and 58 for each position of each retarder control device used on the vehicle. If two resistance modules are used, disconnect one of them when measuring voltage signals from the other. Are the voltages within the specified values?</td>
<td>Refer to Table 6–3</td>
<td>Go to Step 10</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition. 2. Disconnect the 16-pin bypass connector on J 47275 TCM Breakout. 3. Turn ON the ignition. 4. At J 47275-1 TCM Overlay, connect a DVOM and measure voltage between pins 12 and 58. Is the voltage within the specified value?</td>
<td>4.75–5.0V</td>
<td>Go to Step 7</td>
<td>Go to Step 10</td>
</tr>
<tr>
<td>7</td>
<td>Replace the retarder request sensor (resistance module). Is replacement complete?</td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>After replacing the retarder request sensor, perform the following: 1. Turn ON the ignition. 2. Reconnect the 16-pin bypass connector on J 47275 TCM Breakout. 3. At J 47275-1 TCM overlay, connect a DVOM and measure voltage between pins 56 and 58 for each position of each retarder control device used on the vehicle. If two resistance modules are used, disconnect one of them when measuring voltage signals from the other. Are voltages within specified values?</td>
<td>Refer to Table 6–3</td>
<td>Go to Step 11</td>
<td>Go to Step 9</td>
</tr>
<tr>
<td>9</td>
<td>Replace the retarder control device. Is replacement complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC C1312 Retarder Request Sensor Failed Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Use Allison DOC™ For PC–Service Tool to monitor retarder request signal.
3. Drive the vehicle under conditions noted in failure records.
4. Confirm with the service tool in the test passed section that the diagnostic test was run.
Did the DTC return? | Begin the diagnosis again.
Go to Step 1 | System OK |

Table 6–3. Voltage/Resistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Terminals</th>
<th>Resistance Test in Resistance Module*</th>
<th>Voltage Signal**</th>
<th>Wiring to Control Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Full On</td>
<td>A to C</td>
<td>12Ω KΩ +/- 5%</td>
<td>3.6 V ± 0.2V</td>
<td>No connections</td>
</tr>
<tr>
<td>Pressure Switch Full On</td>
<td>A to C</td>
<td>32Ω</td>
<td>1.1 V</td>
<td>A</td>
</tr>
<tr>
<td>Pressure Switch High</td>
<td>A to C</td>
<td>100Ω</td>
<td>3.6 V</td>
<td>B</td>
</tr>
<tr>
<td>3-Step E-10R Bendix Pedal</td>
<td>A to C</td>
<td>32Ω</td>
<td>1.1 V</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>32Ω</td>
<td></td>
<td>1.9 V</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>58Ω</td>
<td></td>
<td>2.8 V</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>100Ω</td>
<td></td>
<td>3.6 V</td>
<td>D</td>
</tr>
<tr>
<td>6-Step Hand Lever OFF</td>
<td>A to C</td>
<td>32Ω</td>
<td>1.1 V</td>
<td>+</td>
</tr>
<tr>
<td>Position 1</td>
<td></td>
<td>14Ω</td>
<td>1.5 V</td>
<td>1</td>
</tr>
<tr>
<td>Position 2</td>
<td></td>
<td>28Ω</td>
<td>1.9 V</td>
<td>2</td>
</tr>
<tr>
<td>Position 3</td>
<td></td>
<td>45Ω</td>
<td>2.3 V</td>
<td>3</td>
</tr>
<tr>
<td>Position 4</td>
<td></td>
<td>65Ω</td>
<td>2.8 V</td>
<td>4</td>
</tr>
<tr>
<td>Position 5</td>
<td></td>
<td>82Ω</td>
<td>3.2 V</td>
<td>5</td>
</tr>
<tr>
<td>Position 6</td>
<td></td>
<td>100Ω</td>
<td>3.6 V</td>
<td>6</td>
</tr>
<tr>
<td>Auto 1/2 ON</td>
<td>A to C</td>
<td>12Ω</td>
<td>1.1 V</td>
<td>No connections</td>
</tr>
<tr>
<td>3 Pressure Switches Low</td>
<td>A to C</td>
<td>32Ω</td>
<td>1.9 V</td>
<td>A and B</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>68Ω</td>
<td>2.8 V</td>
<td>A and B</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>100Ω</td>
<td>3.6 V</td>
<td>A and B</td>
</tr>
<tr>
<td>Auto 1/2 ON</td>
<td>A to C</td>
<td>21.4Ω</td>
<td>1.9 V</td>
<td>A</td>
</tr>
<tr>
<td>2 Pressure Switches Auto</td>
<td></td>
<td>32Ω</td>
<td>1.9 V</td>
<td>A</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>68Ω</td>
<td>2.8 V</td>
<td>B</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>100Ω</td>
<td>3.6 V</td>
<td>A and B</td>
</tr>
<tr>
<td>Dedicated Pedal</td>
<td>No Check</td>
<td>Interface not a resistance module</td>
<td>0.7–1.2 V</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4–3.5 V</td>
<td>B</td>
</tr>
</tbody>
</table>

* Resistance module must be disconnected from the wiring harness and retarder control devices.

** These voltages may be measured between TCM pins 56 and 58 using J 47275 TCM Breakout.
DTC C1313 Retarder Request Sensor Failed High

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

OIL LEVEL

HALL EFFECT

SUMP TEMP

PS1

5V SENSOR VOLTAGE

THROTTLE POSITION OR RTDR PRESSURE SIGNAL ANALOG RETURN

ENGINE TEMP

RETARDER TEMP

ENGINE WATER TEMP

OIL LEVEL SENSOR

SUMP TEMP

PS1 DIAGNOSTIC PRESSURE SWITCH

WIRE 156

WIRE 112

WIRE 144

WIRE 158

WIRE 175

WIRE 135

WIRE 158

WIRE 112

WIRE 116

WIRE 154

WIRE 177

* NORMALLY CLOSED

Copyright © 2005 General Motors Corp.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC C1313 Retarder Request Sensor Failed High

Circuit Description
The Transmission Control Module (TCM) can be calibrated to receive a retarder request signal from a retarder request sensor, sometimes called a resistance module. The TCM is connected to the retarder request sensor by:

- a reference voltage wire,
- retarder request signal wire, and
- analog ground wire.

The TCM provides a 5V reference voltage to the retarder request sensor. A voltage divider network in the sensor produces a retarder request signal in response to inputs from the retarder control device(s). The TCM interprets this signal as a percent retarder requested.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- The components are powered and engine speed is greater than 200 rpm and less than 7500 rpm.

Conditions for Setting the DTC
DTC C1313 sets if the TCM is calibrated to receive the retarder request signal, and the signal voltage is greater than 4.7V for 5 seconds.

Actions Taken When the DTC Sets
When DTC C1313 is active, the following conditions will occur:

- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.
- TCM may inhibit retarder operation, if not using the J1939 Datalink for retarder request signal.

Conditions for Clearing DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC C1313 indicates the TCM has detected a voltage signal from the retarder request sensor in the high error zone. The code can be caused by:
 - Faulty wiring.
 - Faulty connections to the retarder request sensor or retarder control device.
 - A faulty retarder request sensor (resistance module).
 - A faulty retarder control device.
 - A faulty TCM.
- DTC C1313 can be caused by a short-to-battery in the 5V reference wire 112 or retarder request signal wire 156. DTC C1313 can also be caused by an open in analog return wire 158. The retarder request sensor shares a common 5V reference voltage with the transmission oil level sensor (OLS) and throttle position sensor (TPS) on wire 112. A short-to-battery in the 5V reference wire 112 or open in analog return wire 158 causes a “sensor failed high” code for the other devices as well. A short-to-battery in retarder request signal wire 156 will produce a DTC C1313 only.
DIAGNOSTIC TROUBLE CODES (DTC)

- Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for an active DTC.
3. This step tests for defective wiring in external harness.
5. This step tests for retarder request sensor functionality.
6. This step tests for proper 5V reference voltage at the TCM with OEM harness disconnected.

| DTC C1313 Retarder Request Sensor Failed High |
|-----------------|-----------------|-----------------|
| **Step** | **Action** | **Value(s)** | **Yes** | **No** |
| 1 | Was Section 3–5, Beginning The Troubleshooting Process, performed? | Go to Step 2 | Go to Section 3–5, Beginning the Troubleshooting Process |
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Clear the DTC and drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that the retarder request sensor voltage is above a set voltage for a set period of time. It may also indicate a short-to-battery on 5V reference wire 112 or an open on analog return wire 158.
Did DTC C1313 return? | Go to Step 3 | Go to Diagnostic Aids |
| 3 | 1. Turn OFF the ignition.
2. Inspect the routing of 5V reference wire 112, retarder request signal wire 156, and analog return (ground) wire 158 between the TCM and the retarder request sensor.
3. Disconnect the 80-way connector from the TCM.
4. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
5. Disconnect the transmission 20-way connector, RMR connector, and TPS connector, if installed.
6. Test for shorts-to-battery on wires 112 and 156, and opens on wire 158.
Was chafing or wire damage found? | Go to Step 4 | Go to Step 5 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC C1313 Retarder Request Sensor Failed High (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 5 | 1. Turn OFF the ignition.
2. Reconnect the TCM to J 47275 TCM Breakout.
3. Reconnect the RMR connector, transmission 20-way connector, and TPS connector, if installed.
4. Turn ON the ignition.
5. At J 47275-1 TCM Overlay, connect a DVOM and measure voltage between pins 56 and 58 for each position of each retarder control device used on the vehicle.
If two resistance modules are used, disconnect one of them when measuring voltage signals from the other. Are the voltages within the specified values? | Refer to Table 6–4 | Go to Step 10 | Go to Step 6 |
| 6 | 1. Turn OFF the ignition.
2. Disconnect the 16-pin bypass connector on J 47275 TCM Breakout.
3. Turn ON the ignition.
4. At J 47275-1 TCM Overlay, connect a DVOM and measure voltage between pins 12 and 58.
Is the voltage within the specified value? | 4.7–5.0V | Go to Step 7 | Go to Step 10 |
| 7 | Replace the retarder request sensor (resistance module).
Is replacement complete? | | | Go to Step 8 |
| 8 | After replacing the retarder request sensor, perform the following:
1. Turn ON the ignition.
2. Reconnect the 16-pin bypass connector on J 47275 TCM Breakout.
3. At J 47275-1 TCM Overlay, connect a DVOM and measure voltage between pins 56 and 58 for each position of each retarder control device used on the vehicle.
If two resistance modules are used, disconnect one of them when measuring voltage signals from the other. Are voltages within specified values? | Refer to Table 6–4 | Go to Step 11 | Go to Step 9 |
| 9 | Replace the retarder control device.
Is replacement complete? | | | Go to Step 11 |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | | | Go to Step 11 |
In order to verify your repair:
1. Clear the DTC.
2. Use Allison DOC™ For PC–Service Tool to monitor retarder request signal.
3. Drive the vehicle under conditions noted in failure records.
4. Confirm with the service tool in the test passed section that the diagnostic test was run.
Did the DTC return?

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Use Allison DOC™ For PC–Service Tool to monitor retarder request signal.
3. Drive the vehicle under conditions noted in failure records.
4. Confirm with the service tool in the test passed section that the diagnostic test was run.
Did the DTC return? | Begin the diagnosis again.
Go to Step 1 | System OK |

Table 6–4. Voltage/Resistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Terminals</th>
<th>Resistance Test in Resistance Module</th>
<th>Voltage Signal**</th>
<th>Wiring to Control Device</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Terminal</td>
<td>Resistance KΩ</td>
<td>% Retarder Application</td>
</tr>
<tr>
<td>Auto Full On</td>
<td>A to C</td>
<td>12</td>
<td>100</td>
<td>3.6</td>
</tr>
<tr>
<td>Pressure Switch</td>
<td>A to C</td>
<td>32</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>A to C</td>
<td>100</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>3-Step E-10R</td>
<td>A to C</td>
<td>32</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>Bendix Pedal</td>
<td>A to C</td>
<td>32</td>
<td>32</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>A to C</td>
<td>58</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A to C</td>
<td>100</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>6-Step Hand Lever</td>
<td>A to C</td>
<td>32</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>OFF</td>
<td>A to C</td>
<td>14</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Position 1</td>
<td>A to C</td>
<td>28</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Position 2</td>
<td>A to C</td>
<td>45</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Position 3</td>
<td>A to C</td>
<td>65</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Position 4</td>
<td>A to C</td>
<td>82</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Position 5</td>
<td>A to C</td>
<td>100</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Position 6</td>
<td>A to C</td>
<td>12</td>
<td>50</td>
<td>2.4</td>
</tr>
<tr>
<td>Auto 1/2 ON</td>
<td>A to C</td>
<td>32</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>3 Pressure Switches</td>
<td>A to C</td>
<td>32</td>
<td>32</td>
<td>1.9</td>
</tr>
<tr>
<td>Low</td>
<td>A to C</td>
<td>68</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>A to C</td>
<td>100</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>A to C</td>
<td>21.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto 1/2 ON</td>
<td>A to C</td>
<td>32</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Auto 2 Pressure Switches</td>
<td>A to C</td>
<td>68</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>A to C</td>
<td>100</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>No Check</td>
<td>Interface not a resistance module</td>
<td>0</td>
<td>0.7–1.2</td>
</tr>
<tr>
<td></td>
<td>No Check</td>
<td>100</td>
<td>3.4–3.5</td>
<td></td>
</tr>
</tbody>
</table>

* Resistance module must be disconnected from the wiring harness and retarder control devices.

** These voltages may be measured between TCM pins 56 and 58 using J 47275 TCM Breakout.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0122 Pedal Position Sensor Low Voltage

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

ANALOG RETURN

OIL LEVEL SENSOR

HALL EFFECT

SUMP TEMP

PS1

NC* NORMALLY CLOSED

WIRE 156

WIRE 112

WIRE 144

WIRE 158

WIRE 175

WIRE 135

WIRE 158

WIRE 112

WIRE 154

WIRE 177

WIRE 116

TCM

RETARDER REQUEST SIGNAL

5V SENSOR VOLTAGE

THROTTLE POSITION OR RTDR PRESSURE SIGNAL

ANALOG RETURN

RETARDER TEMP

ENGINE TEMP

ENGINE WATER TEMP

OIL LEVEL SENSOR

SUMP TEMP

PS1 DIAGNOSTIC PRESSURE SWITCH

* NORMALLY CLOSED
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0122 Pedal Position Sensor Low Voltage

Circuit Description
The Transmission Control Module (TCM) may receive input on throttle position from either a Throttle Position Sensor (TPS) or a signal transmitted by the engine electronic controls.

Vehicles not equipped with electronically-controlled engines have a TPS attached to the engine fuel control linkage. The TPS continuously sends the exact throttle position to the transmission TCM.

The TPS is a sliding resistor sensor (potentiometer) actuated by a mechanical linkage. The TCM delivers a constant voltage to one terminal of the TPS resistive strip. The other TPS terminal connects to ground. The resistor contacts of the TPS provide a regulated voltage signal input to the TCM.

When actuated by the mechanical throttle cable, the contacts of the resistor move along the resistive strip. As the contacts slide along the resistive strip, a voltage is sent to the TCM. At each increment of 0.78 mm (0.007 inch) along the resistive strip, the contacts deliver a different voltage to the TCM. The different voltages are interpreted as throttle sensor movement. The TCM converts travel distance (mm) into throttle opening percentage.

Conditions for Running the DTC
• The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
• The components are powered and engine speed is greater than 200 rpm.
• DTC P0122 Pedal Position Sensor Circuit High Voltage is not active.

Conditions for Setting the DTC
DTC P0122 sets when the TCM detects a throttle position sensor voltage less than 0.55V for 5 seconds.

Action Taken When the DTC Sets
• The TCM does not illuminate the CHECK TRANS light.
• DTC P0122 is stored in the TCM memory.
• The TCM uses the default throttle value, based on engine torque and speed.
• The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS LIGHT
The Allison DOC™ For PC–Service Tool may be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without the DTC recurring.

Diagnostic Aids
• Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
• You may have to drive the vehicle in order to experience a fault.
DIAGNOSTIC TROUBLE CODES (DTC)

- DTC P0122 can be caused by an open or short-to-ground in either the 5V reference wire 112 or TPS signal wire 144. The TPS shares a common 5V reference voltage wire 112 with the optional transmission oil level sensor (OLS) and retarder request sensor. An open or short-to-ground in the common 5V reference causes a “sensor failed low” code for the other devices as well. An open or short-to-ground on wire 144 will cause a DTC P0122 only.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper adjustment of TPS.
3. This step tests for the proper ignition voltage.
4. This step tests for the proper TCM 5V reference voltage.
5. This step tests for dead spots in the potentiometer.
6. This step tests for abnormal TPS resistance.
7. This step tests for proper resistance of the TPS circuit.
8. This step tests for an open or short-to-ground in TPS signal wire 144.
9. This step tests for proper 5V reference voltage at TCM without OEM harness.
10. This step tests for an open or short-to-ground on 5V reference wire 112.

DTC P0122 Pedal Position Sensor Low Voltage

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Refer to Appendix F to check for proper TPS adjustment. Is the TPS adjusted properly?</td>
<td></td>
<td>Go to Step 3</td>
<td>Adjust TPS to proper setting. Go to Step 12</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the DTC failure record data. 4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 4</td>
<td>Resolve voltage problem (refer to DTC P0882 and DTC P0883)</td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition. 2. Disconnect the 80-way connector from the TCM and install the J 47275 TCM Breakout between the TCM and the OEM-side connector. 3. With the engine OFF, turn the ignition to the ON position. 4. Using a DVOM, measure the voltage between pins 12 and 58. Is the voltage within the specified value?</td>
<td>4.75–5.0V</td>
<td>Go to Step 5</td>
<td>Go to Step 9</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0122 Pedal Position Sensor Low Voltage (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. With the engine OFF and the ignition in the ON position, monitor TPS percentage with Allison DOC™ For PC–Service Tool.
 2. Slowly increase the throttle from idle to full throttle position.
 3. Watch for a steady increase in TPS percentage.
 Was the throttle percentage steady and without interruptions? | | Go to Diagnostic Aids | Go to Step 6 |
| 6 | 1. Turn OFF the ignition.
 2. Disconnect the TPS connector.
 3. Using a DVOM, measure the resistance between TPS pins A and C.
 Is resistance within the specified value? | 9000–15,000 Ohms | Go to Step 7 | Go to Step 11 |
| 7 | 1. Reconnect the TPS connector.
 2. Disconnect the J 47275 TCM Breakout from the TCM. Leave the OEM 80-way connector mated to the J 47275 TCM Breakout.
 3. Using a DVOM, measure resistance between 80-way connector pins 12 and 58.
 Is resistance within the specified value? | 9000–15,000 Ohms | Go to Step 8 | Go to Step 10 |
| 8 | 1. Turn OFF the ignition.
 2. Disconnect the TPS connector.
 3. Using a DVOM at J47275-1 TCM Overlay, test for opens, wire-to-wire shorts, and shorts-to-ground at pin 44.
 Were any opens, wire-to-wire shorts, or shorts-to-ground found? | | Go to Step 10 | Go to Step 11 |
| 9 | 1. Turn OFF the ignition.
 2. Disconnect the 16-pin bypass connector on J 47275 TCM breakout.
 3. Turn ON the ignition.
 4. Using a DVOM at J 47275-1 TCM Overlay, measure voltage between pins 12 and 58.
 Is the voltage within the specified value? | 4.75–5.0V | Go to Step 10 | Go to Step 13 |
| 10 | 1. Turn OFF the ignition.
 2. Disconnect the J 47275 TCM Breakout from the TCM. Leave the OEM 80-way connector mated to the J 47275 TCM Breakout.
 3. Reconnect the 16-pin bypass connector on J 47275 TCM Breakout.
 4. Disconnect the TPS connector, transmission 20-way connector, and RMR device, if installed.
 5. Using a DVOM at J 47275-1 TCM Overlay, test for opens, wire-to-wire shorts, and shorts-to-ground at pin 12.
 6. Test for opens at pin 58.
 Were any opens, wire-to-wire shorts, or shorts-to-ground found? | | Go to Step 11 | Go to Diagnostic Aids |
DTC P0122 Pedal Position Sensor Low Voltage (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Repair the vehicle wiring harness. Is the repair complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Replace the throttle position sensor. Is the replacement complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is the replacement complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Operate the vehicle under normal driving conditions. Did the DTC return?</td>
<td></td>
<td>System OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td></td>
</tr>
</tbody>
</table>
DTC P0123 Pedal Position Sensor High Voltage

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

TCM

5V SENSOR VOLTAGE
THROTTLE POSITION OR RTDR PRESSURE SIGNAL ANALOG RETURN
RETARDER REQUEST SIGNAL
ENGINE TEMP
ENGINE WATER TEMP
OIL LEVEL SENSOR
PS1 DIAGNOSTIC PRESSURE SWITCH

* NORMALLY CLOSED
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0123 Pedal Position Sensor High Voltage

Circuit Description
The Transmission Control Module (TCM) receives input on throttle position from either a Throttle Position Sensor (TPS) or a signal transmitted by the engine electronic controls.

Vehicles not equipped with electronically-controlled engines have a TPS attached to the engine fuel control linkage. The TPS continuously sends the exact throttle position to the transmission TCM.

The TPS is a sliding resistor sensor (potentiometer) actuated by a mechanical linkage. The TCM delivers a constant voltage to one terminal of the TPS resistive strip. The other TPS terminal connects to ground. The resistor contacts of the TPS are connected to provide a regulated voltage signal input to the TCM.

When actuated by the mechanical throttle cable, the contacts of the resistor move along the resistive strip. As the contacts slide along the resistive strip, a voltage is sent to the TCM. At each increment of 0.78 mm (0.007 inch) along the resistive strip, the contacts deliver a different voltage to the TCM. The different voltages are interpreted as throttle sensor movement. The TCM converts travel distance (mm) into throttle opening percentage.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- The components are powered and engine speed is greater than 200 rpm.
- DTC P0123 Throttle/Pedal Position Sensor/Switch A Circuit Low Input is not active.

Conditions for Setting the DTC
DTC P0123 sets when the TCM detects a throttle position sensor voltage greater than 4.75V for 5 seconds.

Action Taken When the DTC Sets
- The TCM does not illuminate the CHECK TRANS light.
- DTC P0123 is stored in the TCM history.
- The TCM uses the default throttle value, based on engine torque and speed.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS LIGHT
The Allison DOC™ For PC–Service Tool may be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without the DTC recurring.

Diagnostic Aids
- Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle in order to experience a fault.
DIAGNOSTIC TROUBLE CODES (DTC)

- DTC P0123 can be caused by a short-to-battery in either the 5V reference wire 112 or TPS signal wire 144. DTC P0123 can also be caused by an open in analog return wire 158. The TPS shares a common 5V reference voltage wire 112 with the transmission oil level sensor (OLS) and retarder request sensor. A short-to-battery in 5V reference wire or open in analog return wire 158 causes a “sensor failed high” code for the other devices as well. A short-to-battery on TPS signal wire 144 will produce a DTC P0123 only.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper adjustment of TPS.
3. This step tests for the proper ignition voltage.
4. This step tests for the proper TCM 5V reference voltage.
5. This step tests for dead spots in the potentiometer.
6. This step tests for abnormal TPS resistance.
7. This step tests for proper resistance of the TPS circuit.
8. This step tests for a short-to-battery in TPS signal wire 144.
9. This step tests for proper 5V reference voltage at TCM without OEM harness.
10. This step tests for a short-to-battery in 5V reference wire 112 or open in analog return wire 158.

DTC P0123 Pedal Position Sensor High Voltage

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Refer to Appendix F to determine proper TPS adjustment. Is the TPS adjusted properly?</td>
<td></td>
<td>Go to Step 3</td>
<td>Adjust TPS to proper setting. Go to Step 14</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the DTC failure record data.
4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 4 | Resolve voltage problem (refer to DTC P0882 and DTC P0883) |
| 4 | 1. Turn OFF the ignition.
2. Disconnect the 80-way connector from the TCM and install the J 47275 TCM Breakout between the TCM and the OEM-side connector.
3. With the engine OFF, turn the ignition to the ON position.
4. Using a DVOM, measure the voltage between pins 12 and 58.
Is the voltage within the specified value? | 4.75–5.0V | Go to Step 5 | Go to Step 9 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0123 Pedal Position Sensor High Voltage (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. With the engine OFF and the ignition in the ON position, monitor TPS percentage with Allison DOC™ For PC–Service Tool.
2. Slowly increase the throttle from idle to full throttle position.
3. Watch for a steady increase in TPS percentage. Was TPS percentage steady and without interruptions? | | Go to Step 6 | Go to Step 12 |
| 6 | 1. Turn OFF the ignition.
2. Disconnect the TPS connector.
3. Using a DVOM, measure the resistance between TPS pins A and C. Is resistance within the specified value? | 9000–15,000 Ohms | Go to Step 7 | Go to Step 11 |
| 7 | 1. Reconnect the TPS connector.
2. Disconnect the J 47275 TCM Breakout from the TCM. Leave the OEM 80-way connector mated to the J 47275 TCM Breakout.
3. Using a DVOM, measure resistance between 80-way connector pins 12 and 58. Is resistance within the specified value? | 9000–15,000 Ohms | Go to Step 8 | Go to Step 10 |
| 8 | 1. Turn OFF the ignition.
2. Disconnect the TPS connector.
3. Using a DVOM at J 47275-1 TCM Overlay, test for wire-to-wire shorts and shorts-to-battery at pin 44. Were any wire-to-wire shorts or shorts-to-battery found? | | Go to Step 9 | Go to Step 11 |
| 9 | 1. Turn OFF the ignition.
2. Disconnect the 16-pin bypass connector on J 47275 TCM breakout.
3. Turn ON the ignition.
4. Using a DVOM at J 47275-1 TCM Overlay, measure voltage between pins 12 and 58. Is the voltage within the specified value? | 4.75–5.0V | Go to Step 10 | Go to Step 13 |
| 10 | 1. Turn OFF the ignition.
2. Disconnect the J 47275 TCM Breakout from the TCM. Leave the OEM 80-way connector mated to the J 47275 TCM Breakout.
3. Reconnect the 16-pin bypass connector on J 47275 TCM Breakout.
4. Disconnect the TPS connector, transmission 20-way connector, and RMR connector, if installed.
5. Using a DVOM at J 47275-1 TCM Overlay, test for opens, wire-to-wire shorts, and shorts-to-ground at pin 12.
6. Test for opens at pin 58. Were any opens, wire-to-wire shorts, or shorts-to-ground found? | | Go to Step 11 | Go to Diagnostic Aids |
DTC P0123 Pedal Position Sensor High Voltage (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Repair the vehicle wiring harness. Is the repair complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Replace the throttle position sensor. Is the replacement complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is the replacement complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Operate the vehicle under normal driving conditions. Did the DTC return?</td>
<td></td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0218 Transmission Fluid Over-Temperature
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0218 Transmission Fluid Over-Temperature

Circuit Description
Transmission fluid flow starts in the transmission sump. Fluid is drawn into the oil pump assembly through the suction filter and internal passages in the main housing and front support. The gerotor gear set in the oil pump assembly turns at engine speed and pressurizes the fluid. The main regulator valve regulates the discharge pressure at the oil pump. Pressurized fluid returns to the hydraulic control module where it is directed to the clutch apply circuits and the control main regulator valve. Control main pressure is used to stroke solenoid regulator valves, which apply and release transmission clutches in response to solenoid commands from the Transmission Control Module (TCM).

The main pump produces substantially more fluid flow than is required by the clutch apply circuit. Surplus oil pressure (overage) at the main regulator valve is relieved into the converter flow circuit. The converter flow circuit routes pressurized fluid to the torque converter via the converter flow valve and the converter regulator valve. Hot fluid leaving the torque converter is routed back through the converter flow valve into cooler lines that run to the transmission oil cooler in the vehicle cooling system. The cooled fluid is returned to the transmission and enters the transmission lubrication circuit. The lube regulator valve regulates the proper lubrication pressure and directs excess fluid back to the sump. The transmission fluid temperature sensor is part of the internal wiring harness and measures the sump temperature.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- The components are powered and engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
- Engine is running. If engine runtime is less than 10 minutes, then engine coolant temperature must be above 20°C (68°F) for more than 20 seconds.

Conditions for Setting the DTC
The TCM detects transmission fluid temperature greater than 126.85°C (260°F) value for more than 10 seconds.

Actions Taken When the DTC Sets
When DTC P0218 is active, the following conditions will occur:
- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.
- The TCM freezes shift adapts (DNA).
- TCM defaults to “hot mode” shift schedule where fourth range is held and TCC is inhibited to increase engine speed and improve cooler flow.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure. The TCM cancels the DTC default actions when the fault no longer exists and the DTC passes test.

Diagnostic Aids
- The Allison DOC™ For PC–Service Tool transmission fluid temperature should rise steadily during warm-up cycles and then stabilize.
- DTC P0218 may set after DTC P0711 (not active) has set. Follow the diagnostic table for DTC P0711 before proceeding to the diagnostic table for P0218. Repairing the condition that set DTC P0711 will likely eliminate DTC P0218.
- A stuck autoflow valve can cause overheating in retarder-equipped transmissions. Refer to section 8 for general troubleshooting of performance complaints.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

1. This step tests for proper transmission fluid level and condition.
2. This step monitors the status of DTC P0218.
3. This step verifies which condition has set the DTC P0218.
4. This step tests for proper resistance value in entire circuit.
5. This step tests for wire-to-wire shorts, shorts-to-ground, or an open on wire 154.
6. This step tests the resistance value of the internal harness and sump temperature sensor.
7. This step tests the resistance value of the internal sump temperature sensor.
8. This step tests to determine source of overheat—the engine or transmission.
9. This step tests for proper cooler pressure drop.
10. This step tests for stuck stator.
11. This step inspects vehicle’s engine and transmission cooling systems.

DTC P0218 Transmission Fluid Over-Temperature

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure. Refer to the appropriate mechanic’s tips.</td>
<td></td>
<td>go to Step 3</td>
<td>Go to mechanic’s tips</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Install temperature gauges for transmission temperature and engine water temperature. 3. Turn ON the ignition. 4. Record the failure records. 5. Clear the DTCs. 6. Drive the vehicle and monitor the sump temperature on Allison DOC™ For PC–Service Tool. Did DTC P0218 return?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>Compare the manual temperature gauge reading to the Allison DOC™ For PC–Service Tool transmission temperature when the DTC is set. Does the manual temperature gauge confirm the transmission fluid temperature actually is hot when DTC P0218 is produced?</td>
<td></td>
<td>Go to Step 12</td>
<td>Go to Step 5</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P0218 Transmission Fluid Over-Temperature (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn the ignition OFF.
2. Disconnect the 80-way connector from the TCM.
3. Connect J 47425 TCM Breakout to the OEM connector. Leave the TCM disconnected. The TCM should not be connected to properly perform this test.
4. Using a DVOM at J 47275-1 TCM Overlay, measure the resistance between pins 54 and 58. Is the resistance within the specified value? | 3511–3653 Ohms at 20°C (68°F)
Refer to Appendix Q | Go to Step 6 | Go to Step 7 |
| 6 | 1. Disconnect the transmission 20-way connector, TPS, and RMR, if installed.
2. At J 47275-1 TCM Overlay connect a DVOM, test for opens, wire-to-wire shorts, and shorts-to-ground at pin 54 and 58. Were any wiring defects found? | | Go to Step 8 | Go to Step 16 |
| 7 | 1. Disconnect the 20-way connector at the transmission and install J 47279 Transmission Breakout. Connect only the J 47279 Transmission Breakout to the transmission; the vehicle side of the harness should not be connected for this test.
2. At J 47279-1 Transmission Overlay, using a DVOM, measure resistance at main transmission connector pins 18 and 19. Is the resistance within the specified value? | 3511–3653 Ohms at 20°C (68°F)
Refer to Appendix Q | Go to Step 8 | Go to Step 9 |
| 8 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete? | | Go to Step 17 |
| 9 | 1. Remove the hydraulic control module assembly.
2. Disconnect the sump thermistor from the internal wiring harness.
3. Using a DVOM, measure thermistor resistance at pins A and B. Is resistance within the specified values? | 3511–3653 Ohms at 20°C (68°F)
Refer to Appendix Q | Go to Step 10 | Go to Step 11 |
| 10 | Replace the internal harness (refer to mechanic’s tips). Is the replacement complete? | | Go to Step 17 |
| 11 | Replace the sump thermistor (refer to mechanic’s tips). Is replacement complete? | | Go to Step 17 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0218 Transmission Fluid Over-Temperature (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1. Use temperature gauge readings obtained in Step 4 above.</td>
<td></td>
<td></td>
<td>Go to Step 13</td>
</tr>
<tr>
<td></td>
<td>2. Compare engine water temperature to transmission fluid temperature.</td>
<td></td>
<td></td>
<td>Go to Step 15</td>
</tr>
<tr>
<td></td>
<td>Did the transmission become hot before the engine?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1. Install pressure gauges in the “To” and “From” cooler lines.</td>
<td>Refer to Table 6–5 for 4000 Product Family. Refer to Table 6–6 for 3000 Product Family</td>
<td>Go to Step 14</td>
<td>Go to Step 15</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Subtract “From Cooler” from “To Cooler” pressure to obtain pressure drop across the transmission oil cooler.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Verify cooler pressure drop satisfies limits of Table 6–5 (4000 Product Family) or Table 6–6 (3000 Product Family).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is cooler pressure drop within specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Check for a possible torque converter stator malfunction. A stuck stator would be indicated by no cool-down in Neutral after stalling the transmission. Refer to appropriate service manual for Stall Test Procedures.</td>
<td></td>
<td>Go to Section 8, General Troubleshooting of Performance Complaints</td>
<td>Go to Step 17</td>
</tr>
<tr>
<td></td>
<td>Did you find and correct the condition?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1. Inspect the engine cooling system for the following conditions:</td>
<td></td>
<td></td>
<td>Go to Step 17</td>
</tr>
<tr>
<td></td>
<td>• Air flow restrictions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Air flow blockage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• System fluid level and condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Debris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Inspect the transmission cooling system for the following conditions:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Air flow restrictions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Air flow blockage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• System fluid level and condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Damaged cooler lines and hoses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did you find and correct the condition?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td></td>
<td>Go to Step 17</td>
</tr>
<tr>
<td>17</td>
<td>In order to verify your repair:</td>
<td>Begin the diagnosis again.</td>
<td></td>
<td>System OK</td>
</tr>
<tr>
<td></td>
<td>1. Clear the DTC.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Using Allison DOC™ For PC–Service Tool, monitor the transmission fluid temperature.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Drive the vehicle under normal operating conditions. Watch for significant change in TFT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did the DTC return?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0218 Transmission Fluid Over-Temperature

External Hydraulic Circuit Characteristics
Basic, PTO, 93°C (200°F) Sump Temperature

Table 6–5. 4000 Product Family

<table>
<thead>
<tr>
<th>Input rpm</th>
<th>Flow L/s</th>
<th>gpm</th>
<th>Pressure Drop kPa</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.22</td>
<td>3.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>900</td>
<td>0.38</td>
<td>6.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1200</td>
<td>0.55</td>
<td>8.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>0.80</td>
<td>12.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1800</td>
<td>1.03</td>
<td>16.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2100</td>
<td>1.13</td>
<td>18.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2300</td>
<td>1.20</td>
<td>19.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input rpm</th>
<th>Flow</th>
<th>gpm</th>
<th>kPa</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.20</td>
<td>3.2</td>
<td>31.0</td>
<td>4.5</td>
</tr>
<tr>
<td>900</td>
<td>0.37</td>
<td>5.8</td>
<td>63.0</td>
<td>9.1</td>
</tr>
<tr>
<td>1200</td>
<td>0.55</td>
<td>8.7</td>
<td>108.0</td>
<td>15.7</td>
</tr>
<tr>
<td>1500</td>
<td>0.77</td>
<td>12.2</td>
<td>167.0</td>
<td>24.2</td>
</tr>
<tr>
<td>1800</td>
<td>0.92</td>
<td>14.5</td>
<td>231.0</td>
<td>30.9</td>
</tr>
<tr>
<td>2100</td>
<td>0.97</td>
<td>15.3</td>
<td>238.0</td>
<td>34.5</td>
</tr>
<tr>
<td>2300</td>
<td>1.00</td>
<td>15.9</td>
<td>250.0</td>
<td>36.3</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P0218 Transmission Fluid Over-Temperature

External Hydraulic Circuit Characteristics

Basic, PTO, 93°C (200°F) Sump Temperature

Table 6–6. 3000 Product Family

<table>
<thead>
<tr>
<th>Input rpm</th>
<th>Flow L/s</th>
<th>Flow gpm</th>
<th>Pressure Drop kPa</th>
<th>Pressure Drop psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.10</td>
<td>1.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>800</td>
<td>0.23</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1200</td>
<td>0.47</td>
<td>7.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1400</td>
<td>0.61</td>
<td>9.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1600</td>
<td>0.74</td>
<td>11.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0.94</td>
<td>14.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2400</td>
<td>1.19</td>
<td>18.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3200</td>
<td>1.28</td>
<td>20.3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input rpm</th>
<th>Flow L/s</th>
<th>Flow gpm</th>
<th>Pressure Drop kPa</th>
<th>Pressure Drop psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.10</td>
<td>1.6</td>
<td>10.0</td>
<td>1.5</td>
</tr>
<tr>
<td>800</td>
<td>0.23</td>
<td>3.5</td>
<td>40.0</td>
<td>5.8</td>
</tr>
<tr>
<td>1200</td>
<td>0.45</td>
<td>7.1</td>
<td>159.0</td>
<td>23.1</td>
</tr>
<tr>
<td>1400</td>
<td>0.57</td>
<td>9.0</td>
<td>252.0</td>
<td>36.6</td>
</tr>
<tr>
<td>1600</td>
<td>0.67</td>
<td>10.6</td>
<td>338.0</td>
<td>49.0</td>
</tr>
<tr>
<td>2000</td>
<td>0.80</td>
<td>12.7</td>
<td>481.0</td>
<td>69.8</td>
</tr>
<tr>
<td>2400</td>
<td>0.85</td>
<td>13.5</td>
<td>549.0</td>
<td>79.6</td>
</tr>
<tr>
<td>3200</td>
<td>0.85</td>
<td>13.5</td>
<td>549.0</td>
<td>79.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input rpm</th>
<th>Flow L/s</th>
<th>Flow gpm</th>
<th>Pressure Drop kPa</th>
<th>Pressure Drop psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.10</td>
<td>1.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>800</td>
<td>0.23</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1200</td>
<td>0.50</td>
<td>7.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1400</td>
<td>0.63</td>
<td>10.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1600</td>
<td>0.77</td>
<td>12.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0.95</td>
<td>15.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2400</td>
<td>1.12</td>
<td>17.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2800</td>
<td>1.22</td>
<td>19.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3200</td>
<td>1.28</td>
<td>20.3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input rpm</th>
<th>Flow L/s</th>
<th>Flow gpm</th>
<th>Pressure Drop kPa</th>
<th>Pressure Drop psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.10</td>
<td>1.6</td>
<td>5.0</td>
<td>0.7</td>
</tr>
<tr>
<td>800</td>
<td>0.23</td>
<td>3.7</td>
<td>46.0</td>
<td>6.7</td>
</tr>
<tr>
<td>1200</td>
<td>0.48</td>
<td>7.6</td>
<td>148.0</td>
<td>21.5</td>
</tr>
<tr>
<td>1400</td>
<td>0.62</td>
<td>9.8</td>
<td>247.0</td>
<td>35.8</td>
</tr>
<tr>
<td>1600</td>
<td>0.73</td>
<td>11.6</td>
<td>346.0</td>
<td>50.2</td>
</tr>
<tr>
<td>2000</td>
<td>0.90</td>
<td>14.3</td>
<td>561.0</td>
<td>81.4</td>
</tr>
<tr>
<td>2400</td>
<td>1.07</td>
<td>17.0</td>
<td>737.0</td>
<td>106.9</td>
</tr>
<tr>
<td>2800</td>
<td>1.10</td>
<td>17.4</td>
<td>770.0</td>
<td>111.7</td>
</tr>
<tr>
<td>3200</td>
<td>1.10</td>
<td>17.4</td>
<td>791.0</td>
<td>114.7</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0602 TCM Not Programmed

NO SCHEMATIC FOR THIS DTC

Circuit Description

At power up and after clearing codes, the Transmission Control Module (TCM) performs a self-test to determine if the calibration in memory is valid.

Conditions for Running the DTC

This test will run before any TCM functions.

Conditions for Setting the DTC

DTC P0602 sets if the TCM determines the present calibration is invalid.

Actions Taken When the DTC Sets

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM returns to the boot program, and waits to be recalibrated.
- TCM inhibits shifts to range.

Conditions for Clearing the DTC/CHECK TRANS Light

The TCM must be recalibrated.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. If DTC P0602 is present, the TCM must be recalibrated. Is recalibration complete?</td>
<td></td>
<td>Go to Step 4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td>Go to Step 4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the vehicle. Did the DTC return?</td>
<td></td>
<td>Go to Step 3</td>
<td>System OK</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0610 TCM Vehicle Options (TransID) Error

Circuit Description

The TransID (TID) feature enables the TCM to recognize various transmission hardware configurations and select an appropriate software calibration. The TCM senses the transmission configuration using TID wire 176. In initial versions of 4th Generation Controls, wire 176 is connected to High Side Driver 1 (HSD1), wire 111, in the internal wiring harness. HSD1 supplies power to the Main Mod solenoid, and Pressure Control Solenoids (PSC) 4 and 6. This wiring configuration is designated TID A.

Conditions for Running the DTC

The test is enabled by the TCM calibration.

Conditions for Setting the DTC

DTC P0610 sets if the TCM determines the controls are incompatible with transmission hardware.

Actions Taken When the DTC Sets

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- The TCM uses a TID A calibration.
Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

DTC P0610 TCM Vehicle Options (TransID) Error

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Turn ON the ignition.
 3. Using Allison DOC™ For PC–Service Tool, determine the highest available TID level supported by the TCM calibration.
 4. Consult the transmission bill of material or build history to determine the actual TID level of the transmission.
 5. Compare the highest available TID level in the calibration to the actual transmission hardware.
 Is the highest available TID level greater than or equal to the actual TID of the transmission? | | Go to Step 3 | Go to Step 4 |
| 3 | 1. Reset Autodetect using Allison DOC™ For PC–Service Tool.
 3. Compare the TID level indicated on Allison DOC™ For PC–Service Tool to the actual TID level of the transmission.
 Did the TCM detect the correct TID level? | | Go to Step 6 | Go to Step 5 |
| 4 | Recalibrate the TCM with a TID calibration that matches the actual TID level of the transmission.
 Is the recalibration complete? | | Go to Step 6 | |
| 5 | **NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.**
 Refer to TCM diagnostic procedure, Section 3–6.
 Is Section 3–6 complete? | | Go to Step 6 | |
| 6 | In order to verify your repair:
 1. Clear the DTC.
 3. Verify the TCM detects the correct TID level.
 Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0613 TCM Processor

NO SCHEMATIC FOR THIS DTC

Circuit Description
The Transmission Control Module (TCM) continually performs a series of processing steps known as a ‘processing loop’ during normal operation. The TCM must complete the processing loop within a specific time limit. The TCM will reset if it does not complete two consecutive loops inside a predetermined time interval.

NOTE: The presence of DTC P0613 indicates a TCM processing error has occurred. Contact the Allison Transmission Service Department at 1-800-252-5283.

Conditions for Running the DTC
This test is run during the entire ignition cycle.

Conditions for Setting the DTC
DTC P0613 sets if the TCM does not complete two processing loops within the allotted time.

Actions Taken When the DTC Sets
• When DTC P0613 is active, the TCM commands OFF all solenoids (SOL OFF). Following recovery from the processor reset, the TCM commands the range that resulted after solenoids were commanded OFF. The TCM resumes normal operation.
• The TCM does not illuminates the CHECK TRANS light.
• DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.
DTC P0614 Torque Control Data Mismatch—ECM/TCM

NO SCHEMATIC FOR THIS DTC

Circuit Description

Shift Energy Management (SEM) allows the Transmission Control Module (TCM) to request torque reduction from the engine controller. By reducing torque, shifts can be made quicker, at a more consistent output torque which reduces clutch temperatures and increases clutch life. When an engine torque rating exceeds a predetermined value, Low Range Torque Protection (LRTP), is used. This feature limits engine torque in lower ranges to protect the transmission from damage during a stall condition.

Conditions for Running the DTC

- TCM detects a J1939 EEC1 message from the engine.
- Then, the TCM requests the J1939 component ID and engine configuration messages from the engine.
- The TCM identifies the engine as an approved “make and model” by matching the component ID with the engine configuration message.
- The test runs for 15 seconds for the first 20 engine starts after the engine is detected on the J1939 communications link.
- The “engine start” counter resets if the TCM is reprogrammed.

Conditions for Setting the DTC

DTC P0614 sets during the following conditions:

- The TCM requires a SEM engine but the engine does not support SEM, i.e., is not on the approved list.
- The TCM requires a SEM and LRTP engine but the engine does not support SEM and LRTP, i.e., is not on the approved list.
- The engine does not respond to a SEM torque reduction request message within 20 ignition cycles.
- The engine does not respond to a LRTP torque reduction request message within 20 ignition cycles.

Actions Taken When the DTC Sets

When DTC P0614 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM will allow operation in Reverse and second range only.
- TCM freezes shift adapts (DNA).
- TCM inhibits the torque converter clutch (TCC).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.
Test Description

The numbers below refer to step numbers on the diagnostic table.

3. This step verifies the engine is on the recognized list of SEM/LRTP engines.
4. This step verifies the engine supports SEM.
5. This step verifies the engine supports LRTP.

DTC P0614 Torque Control Data Mismatch—ECM/TCM

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>If a DTC U0115 is present, troubleshoot and resolve before going to the next step. Is a DTC U0115 present?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Step 8</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Turn ON the ignition. 3. Refer to Engine Hardware Status in SEM/LRTP AND AUTODETECT INFO display of Allison DOC™ For PC–Service Tool. Is the Engine Hardware Status recognized as a SEM/LRTP capable engine?</td>
<td>Recognized Or Not Recognized</td>
<td>Go to Step 4</td>
<td>Go to Step 7</td>
</tr>
<tr>
<td>4</td>
<td>Refer to SEM Validated Status in SEM/LRTP AND AUTODETECT INFO display of Allison DOC™ For PC–Service Tool. Does the ECM support SEM?</td>
<td>ECM Supports SEM Or ECM Doesn’t Support SEM</td>
<td>Go to Step 5</td>
<td>Go to Step 7</td>
</tr>
<tr>
<td>5</td>
<td>Refer to LRTP Validated Status in SEM/LRTP AND AUTODETECT INFO display of Allison DOC™ For PC–Service Tool. Does the ECM support LRTP?</td>
<td>ECM Supports LRTP Or ECM Doesn’t Support LRTP</td>
<td>Go to Step 6</td>
<td>Go to Step 7</td>
</tr>
<tr>
<td>6</td>
<td>This indicates the engine torque values are above the transmission ratings set in the TCM calibration. 1. Inspect the TCM for proper calibration to support SEM and LRTP. If proper TCM calibration is installed, the engine rating is too high for the transmission. 2. Recalibrate the engine to a lower torque rating. Was one of the above conditions found and resolved?</td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Turn over the vehicle to the engine manufacturer to install the proper engine software and calibration to support SEM and/or LRTP. Has the proper software and calibration been installed?</td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
</tbody>
</table>
DTC P0614 Torque Control Data Mismatch—ECM/TCM (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 8 | In order to verify your repair:
1. Using Allison DOC™ For PC–Service Tool, reset SEM AUTOSELECT. Refer to Section 3–8.
2. Clear the DTC.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | Begin the diagnosis again.
Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0634 TCM Internal Temperature Too High

NO SCHEMATIC FOR THIS DTC

Circuit Description

The Transmission Control Module (TCM) is equipped with an internal temperature sensor mounted directly to its circuit board. The TCM will take action to protect against damage from overheat.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm for more than 10 seconds.

Conditions for Setting the DTC

DTC P0634 sets if the TCM internal temperature is greater than or equal to 140°C (284°F) for 10 seconds with engine running.

Actions Taken When the DTC Sets

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM commands OFF all solenoids (SOL OFF).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

Clean the TCM if necessary. Excessive road debris will reduce the effectiveness of the heat sink on the TCM and could cause internal temperature to rise.

DTC P0634 TCM Internal Temperature Too High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Turn ON the ignition.
 3. Record the failure records.
 4. Clear the DTCs.
 5. Drive the vehicle and monitor TCM internal temperature on Allison DOC™ For PC–Service Tool.
 Did DTC P0634 return? | | Go to Step 3 | Go to Diagnostic Aids |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0634 TCM Internal Temperature Too High (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 3 | 1. Inspect the TCM and surrounding area.
 2. Be sure there are no high temperature components such as engine exhaust pipes mounted in the vicinity of the TCM.
 3. Shield or relocate the TCM, if possible.
 Do you find and correct the problem? | Go to Step 5 | Go to Step 4 |
| 4 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
 Refer to TCM diagnostic procedure, Section 3–6.
 Is Section 3–6 complete? | Go to Step 5 |
| 5 | In order to verify your repair:
 1. Install Allison DOC™ For PC–Service Tool.
 2. Monitor TCM internal temperature.
 3. Drive the vehicle under conditions noted in failure records.
 Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P063E Auto Configuration Throttle Input Not Present

NO SCHEMATIC FOR THIS DTC

Circuit Description

When first activated and during the first group of power-on cycles, the Transmission Control Module (TCM) searches for a valid throttle input. The TCM may receive throttle input from an analog throttle position sensor, a pulse-width modulated (PWM) throttle source, or over one of the SAE digital data links as accelerator pedal position and/or percent engine load. The TCM logs a DTC P063E if it fails to detect a throttle source during autodetect.

Conditions for Running the DTC

The test is enabled by the TCM calibration.

Conditions for Setting the DTC

DTC P063E sets if the TCM fails to detect throttle position information for a specified time interval.

Actions Taken When the DTC Sets

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM uses default throttle values.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests to see if TCM is reading throttle information.
3. This step determines what throttle source the vehicle manufacturer intends to use.
4. This step looks for throttle information on the data link.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P063E Auto Configuration Throttle Input Not Present (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 2 | 1. Turn OFF the ignition.
 2. Install the Allison DOC™ For PC–Service Tool.
 3. Turn ON the ignition.
 4. Using Allison DOC™ For PC–Service Tool, determine the throttle source being used by the TCM.
 5. Depress and release the accelerator pedal while monitoring throttle percentage on Allison DOC™ For PC–Service Tool.
 Does throttle percentage on Allison DOC™ For PC–Service Tool respond as expected to changes in the accelerator pedal position? | Go to Step 7 | Go to Step 3 |
| 3 | Consult with the engine or vehicle manufacturer. Determine if the vehicle is using a digital data link (SAE J1587, SAE J1939 or IES CAN) to communicate pedal position or percent engine load. Otherwise, determine if the vehicle is using an analog or PWM throttle position sensor.
 Did the vehicle manufacturer intend to communicate throttle position to the TCM over a digital data link? | Go to Step 4 | Go to Step 7 |
| 4 | 1. Monitor Data Bus Viewer on Allison DOC™ For PC–Service Tool.
 2. Depress and release the accelerator pedal while watching the Data Bus Viewer.
 Does accelerator pedal position information on Data Bus Viewer respond as expected to changes in accelerator pedal position? | Go to Step 5 | Go to Step 6 |
| 5 | Using Allison DOC™ For PC–Service Tool attempt to manually select the TCM throttle source to a data link with valid throttle information.
 Did the TCM detect a throttle source? | Go to Step 8 | Go to Step 6 |
| 6 | Coordinate with the vehicle or engine manufacturer to determine the cause of loss of throttle information on the data link.
 Is the repair complete? | Go to Step 8 |
| 7 | Coordinate with the vehicle or engine manufacturer to repair the analog or PWM throttle sensor.
 Is the repair complete? | Go to Step 8 |
| 8 | In order to verify your repair:
 1. Clear the DTC.
 2. Drive the vehicle.
 3. Using Allison DOC™ For PC–Service Tool, monitor throttle percent.
 4. Verify the TCM detects a valid throttle source.
 Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |

Copyright © 2005 General Motors Corp.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P063F Auto Configuration Engine Coolant Temp Input Not Present

NO SCHEMATIC FOR THIS DTC

Circuit Description

When first activated and during the first group of power-on cycles, the Transmission Control Module (TCM) searches for a valid engine coolant temperature input. The TCM may receive engine coolant temperature input from an analog temperature sensor, or from one of the SAE digital data links. The TCM logs a DTC P063F if it fails to detect an engine coolant temperature source during autodetect.

Conditions for Running the DTC

The test is enabled by the TCM calibration.

Conditions for Setting the DTC

DTC P063F sets if the TCM fails to detect engine coolant temperature information for a specified time interval.

Actions Taken When the DTC Sets

- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests to see if TCM is reading engine coolant information.
3. This step determines what engine coolant temperature source the vehicle manufacturer intends to use.
4. This step looks for engine coolant temperature information on the data link.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Turn OFF the ignition. 2. Install the Allison DOC™ For PC–Service Tool. 3. Start the engine. 4. Using Allison DOC™ For PC–Service Tool, determine the engine coolant temp source being used by the TCM. 5. Allow the engine to warm-up and monitor engine coolant temp on Allison DOC™ For PC–Service Tool. Does engine coolant temperature on Allison DOC™ For PC–Service Tool slowly rise as the engine warms?</td>
<td></td>
<td>Go to Step 7</td>
<td>Go to Step 3</td>
</tr>
</tbody>
</table>
DTC P063F Auto Configuration Engine Coolant Temp Input Not Present (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Consult with the engine or vehicle manufacturer. Determine if the vehicle is using a digital data link (SAE J1587, SAE J1939 or IES CAN) to communicate engine coolant temperature. Otherwise, determine if the vehicle is using an analog engine coolant temperature sensor. Did the vehicle manufacturer intend to communicate engine coolant temperature to the TCM over a digital data link?</td>
<td>Go to Step 4</td>
<td>Go to Step 7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Monitor Data Bus Viewer on Allison DOC™ For PC–Service Tool. 2. Allow the engine to warm-up and watch the Data Bus Viewer. Does engine coolant temperature information on Data Bus Viewer respond as expected as the engine warms?</td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Using Allison DOC™ For PC–Service Tool attempt to manually select the engine coolant temperature source to a data link with valid information. Did the TCM detect an engine coolant temperature source?</td>
<td>Go to Step 8</td>
<td>Go to Step 6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Coordinate with the vehicle or engine manufacturer to determine the cause of loss of engine coolant temperature information on the data link. Is the repair complete?</td>
<td>Go to Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Coordinate with the vehicle or engine manufacturer to repair the analog engine coolant temperature sensor. Is the repair complete?</td>
<td>Go to Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle. 3. Using Allison DOC™ For PC–Service Tool, monitor engine coolant temperature. 4. Verify the TCM detects a valid engine coolant source. Did the DTC return?</td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0658 Actuator Supply Voltage 1 (HSD1) Low

Circuit Description

High Side Driver 1 (HSD1) supplies battery voltage to the Main Mod, PCS4 and PCS6 solenoids via wire 111. HSD1 is continuously ON during normal operation except during brief circuit tests. The TCM regulates control current to the solenoids by switching the appropriate Low Side Driver (LSD) ON and OFF. DTC P0658 indicates the TCM has detected a supply voltage in the HSD1 circuit of 6V or less. DTC P0658 could be caused by a short-to-ground in the high side wiring attached to HSD1 (wire 111).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- HSD1 is commanded ON.
- Engine speed greater than 200 rpm.

Conditions for Setting the DTC

DTC P0658 is set when the TCM detects a low voltage condition (less than 6V) in two solenoids in the HSD1 circuit.

V00866.00.00
Actions Taken When the DTC Sets

When DTC P0658 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM commands OFF all solenoids (SOL OFF). The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for a wire-to-wire short, or short-to-ground in the wire 111 of the OEM chassis harness.
6. This step tests for wiring defects in the transmission internal harness.

DTC P0658 Actuator Supply Voltage 1 (HSD1) Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0658 Actuator Supply Voltage 1 (HSD1) Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect a short-to-ground condition in the HSD1 electrical circuit.
Did DTC P0658 return? | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Turn OFF ignition.
2. Disconnect the 80-way connector at the TCM.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the OEM 20-way connector from the transmission.
5. Inspect the routing of wire 111 in the chassis harness between the TCM and transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 11 and all other pins in the 80-way connector, and test for short-to-ground between pin 11 and chassis ground.
Were any wire-to-wire shorts or shorts-to-ground found? | Go to Step 5 | Go to Step 6 |
| 5 | **NOTE:** The vehicle OEM has responsibility for all external wiring harnesses and vehicle input/output switch repair. Harness and switch repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring or switch.
Is the repair complete? | Go to Step 9 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0658 Actuator Supply Voltage 1 (HSD1) Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install the transmission 20-way connector to the J 47279 Transmission Breakout. Leave the OEM-side disconnected.
3. Using a DVOM at J 47279-1 Transmission Overlay, test for wire-to-wire shorts between pin 1 and all other pins in the 20-way connector, and shorts-to-ground between pin 1 and chassis ground.
 NOTE: The resistance value between pins 1 and 2, between pins 1 and 7 (7-speed models), and between pins 1 and 8 will read normal solenoid resistance. The resistance value between pin 1 and pin 20 (TID wire) will read 0 Ohms.
 Were any wire-to-wire shorts, or shorts-to-ground found? | Go to Step 7 | Go to Step 8 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Repair or replace the internal wiring harness.
 Is the repair complete? | Go to Step 9 |
| 8 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
 Refer to TCM diagnostic procedure, Section 3–6.
 Is Section 3–6 complete? | Go to Step 9 |
| 9 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records.
 Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0659 Actuator Supply Voltage 1 (HSD1) High

Circuit Description

High Side Driver 1 (HSD1) supplies battery voltage to the Main Mod, PCS4 and PCS6 solenoids via wire 111. HSD1 is continuously ON during normal operation except during brief circuit tests. The TCM regulates control current to the solenoids by switching the appropriate Low Side Driver ON and OFF. DTC P0659 indicates the TCM has detected greater than or equal to 6V in the HSD1 circuit when HSD1 is OFF during TCM initialization. DTC P0659 could be caused by an open or short-to-battery in the high side wiring attached to HSD1 (wire 111).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- HSD1 is commanded ON.
- Engine speed greater than 200 rpm.

Conditions for Setting the DTC

DTC P0659 is set when the TCM detects a high voltage condition (> 6V) in the HSD1 circuit after two solenoids indicate a failure.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0659 Actuator Supply Voltage 1 (HSD1) High

Actions Taken When the DTC Sets

When DTC P0659 is active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- The TCM commands OFF all solenoids (SOL OFF). The shift selector position and hydraulic state of latch valves determines range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for an excessive voltage drop (open) in wire 111 of the OEM harness.
5. This step tests for a wire-to-wire short, or short-to-ground in the wire 111 of the OEM chassis harness.
7. This step tests for wiring defects in the transmission internal harness.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0659 Actuator Supply Voltage 1 (HSD1) High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Start the engine.
 3. Record the failure records.
 4. Monitor ignition voltage.
 Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem |
| 3 | 1. Clear the DTC.
 2. Start the engine and test drive the vehicle.
 3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
 NOTE: This DTC is intended to detect an open or short-to-battery condition in the HSD1 electrical circuit.
 Did DTC P0659 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Turn OFF ignition.
 2. Install J 47275 TCM Breakout to the TCM 80-way connector.
 3. Install J 47279 Transmission Breakout at the transmission 20-way connector.
 4. Turn ON the ignition. Leave the engine OFF.
 5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command PCS4 ON.
 6. Determine the voltage drop in the HSD1 circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 11 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 1 and an isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.
 NOTE: A voltage drop of more than 0.5V indicates an excessive voltage loss in the OEM harness.
 Did the high-side voltage drop exceed 0.5VDC? | | Go to Step 6 | Go to Step 5 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0659 Actuator Supply Voltage 1 (HSD1) High
(cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn OFF the ignition.
2. Disconnect the TCM from J 47275 TCM Breakout. Leave the OEM-side connected.
3. Disconnect the OEM-side of the 20-way connector from the J 47279 Transmission Breakout. Leave the transmission-side connected.
4. Inspect the routing of wire 111 in the chassis harness between the TCM and the transmission connector.
5. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 11 and all other pins in the 80-way connector.
Were any wire-to-wire shorts found? | Go to Step 6 | Go to Step 7 |
| 6 | **NOTE:** The vehicle OEM has responsibility for all external wiring harnesses and vehicle input/output switch repair. Harness and switch repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring or switch.
Is the repair complete? | Go to Step 10 |
| 7 | 1. Turn OFF the ignition.
2. Verify that the J 47279 Transmission Breakout is installed at the transmission 20-way connector and the OEM-side is disconnected.
3. Using DVOM at J 47279-1 Transmission Overlay, test for wire-to-wire shorts between pin 1 and all other pins in the 20-way connector.
NOTE: The resistance value between pins 1 and 2, between pins 1 and 7 (7-speed models), and between pins 1 and 8 will read normal solenoid resistance. The resistance value between pins 1 and the pin 20 (TID wire) will read 0 Ohms.
Were any wire-to-wire shorts found? | Go to Step 8 | Go to Step 9 |
| 8 | 1. Remove the hydraulic control module assembly.
2. Repair or replace the internal wiring harness.
Is the repair complete? | Go to Step 10 |
| 9 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 10 |
| 10 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
Circuit Description

The TransID (TID) feature enables the TCM to recognize various transmission hardware configurations and select an appropriate software calibration. The TCM senses the transmission configuration using TID wire 176. In initial versions of Allison 4th Generation Controls, wire 176 is connected to High Side Driver 1 (HSD1) via wire 111, in the internal wiring harness. HSD1 supplies the Main Mod solenoid, PCS4, and PCS6. This wiring configuration is designated TID A.

Conditions for Running the DTC

The test is enabled by the TCM calibration.

Conditions for Setting the DTC

DTC P0702 sets if the TCM is unable to determine the TransID level of the transmission.

Actions Taken When the DTC Sets

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM uses a TID A calibration.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOCTM For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.
Diagnostic Aids

DTC P0702 could be caused by an open circuit condition in wire 176 in the chassis harness.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests the TID circuit in the internal wiring harness.
4. This step tests the TID in the external wiring harness.

DTC P0702 Transmission Control System Electrical (TransID)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Turn OFF the ignition. 2. Disconnect the transmission 20-way connector. 3. Using a digital multimeter (DVOM), test for continuity (0 Ohms) between pin 20 (TID wire 176) and pin 1 in the transmission 20-way connector. 4. Consult Table 6–7, at the end of this DTC, to determine the TransID configuration of the transmission. 5. Compare the continuity test results from sub-step 3 with the TID in the transmission bill of material or build history. Does the continuity test results in sub-step 3 agree with the TransID of the transmission?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Step 3</td>
</tr>
<tr>
<td>3</td>
<td>Repair or replace the internal transmission harness. Is the repair complete?</td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF ignition. 2. Disconnect the 80-way connector at the TCM. 3. Install the OEM-side 80-way connector to J 47275 TCM Breakout. Leave the TCM disconnected. 4. Reconnect the transmission 20-way connector. 5. Using a digital multimeter (DVOM), test for continuity (0 Ohms) between pin 76 (TID wire) and pin 11 in the 80-way connector. 6. Consult Table 6–8, at the end of this DTC, to determine the TransID configuration of the transmission. 7. Compare the continuity test results from sub-step 5 with the TID in the transmission bill of material or build history. Does the continuity test results in sub-step 5 agree with the TransID of the transmission?</td>
<td></td>
<td>Go to Step 6</td>
<td>Go to Step 5</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0702 Transmission Control System Electrical (TransID) (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harnesses and vehicle input/output switch repair. Harness and switch repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Reset Autodetect using Allison DOC™ For PC–Service Tool.
3. Compare the TransID level indicated on Allison DOC™ For PC–Service Tool to the actual TransID level of the transmission. Did the TCM detect the correct TID level? | Go to Step 8 | Go to Step 7 | |
| 7 | **NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.** Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | Go to Step 8 | | |
| 8 | In order to verify your repair:
1. Clear the DTC.
3. Verify the TCM detects the correct TransID level. Did the DTC return? | begin the diagnosis again. Go to Step 1 | System OK | |

Table 6–7.

Wire 176 will be connected to the following wire in the transmission internal harness:

<table>
<thead>
<tr>
<th>TID</th>
<th>Pin 20 connected to ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pin 1 (wire 111)</td>
</tr>
<tr>
<td>B</td>
<td>TBD</td>
</tr>
<tr>
<td>C</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Table 6–8.

Wire 176 will be connected to the following wire via the transmission internal harness:

<table>
<thead>
<tr>
<th>TID</th>
<th>Pin 76 connected to ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pin 11 (wire 111)</td>
</tr>
<tr>
<td>B</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Circuit Description

The Transmission Control Module (TCM) can be calibrated to receive a service brake status input from either an analog input wire or the digital data link. A mechanical switch attached to the brake pedal sends a signal to either the TCM directly or to another electronic controller in the vehicle. When another controller is used, the TCM receives service brake status as a digital message over the vehicle’s communications data link.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- The components are powered and engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0703 sets if the TCM is calibrated to receive the service brake status signal and either of the following conditions is met:

- The TCM senses three acceleration events with service brake signal ON.
- The TCM senses three deceleration events with service brake signal OFF.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0703 Brake Switch Circuit Malfunction

Actions Taken When the DTC Sets

When DTC P0703 is active, the following conditions will occur:

- The TCM does not illuminate the **CHECK TRANS** light.
- DTC is stored in TCM history.
- TCM inhibits Neutral to Drive shifts for refuse packer.
- TCM inhibits Retarder operation if a Throttle Position Sensor (TPS) code is also active.

Conditions for Clearing DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- When analog input wires are used, the service brake status input is active when a pressure switch is closed to complete the circuit between wire 162 and signal return wire 103. If a data link is used, the TCM receives “service brake status” as part of J1939 message parameter PGN 65265, Cruise Control/Vehicle Speed (CCVS).
- DTC P0703 indicates the TCM has detected service brake status ON for 3 acceleration events or service brake status OFF for 3 deceleration events. The code can be caused by:
 - Faulty wiring
 - Faulty connections to the service brake switch
 - A faulty service brake switch
 - Another controller improperly broadcasting service brake status on the data link when the brake switch is not installed or operating
 - A faulty TCM.
- Inspect the wiring for poor electrical connections at the TCM and service brake switch. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- J1939 service brake status can be read on Allison DOC™ For PC–Service Tool. Monitor data link communications using Data Bus Viewer.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for an active DTC.
4. This step tests for status of analog input wire 162.
5. This step determines if service brake status is being communicated by a data link message.
6. This step tests for shorts-to-ground in wire 162.
7. This step tests for proper service brake switch function.
9. This step observes service brake switch status on the digital data link.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0703 Brake Switch Circuit Malfunction

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Clear the DTC and drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that the service brake signal is present for more than three acceleration/deceleration events.
Did DTC P0703 return? | Go to Step 3 | Go to Diagnostic Aids |
| 3 | Inspect vehicle for analog input wire 162.
Is analog input wire 162 present? | Go to Step 4 | Go to Step 9 |
| 4 | 1. Turn ON the ignition.
2. Using Allison DOC™ For PC–Service Tool, observe status of Service Brake input wire 162.
Does wire 162 go ON when brake pedal is depressed and go OFF when brake pedal is released? | Go to Step 5 | Go to Step 6 |
| 5 | Using Allison DOC™ For PC–Service Tool, observe status of service brake.
NOTE: If service brake status is ON while the service brake input wire 162 is OFF, the TCM is receiving a “brake switch status” message via the data link.
Is the service brake status ON when wire 162 is OFF? | Go to Step 9 | Go to Diagnostic Aids |
| 6 | 1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to J 47275 TCM Breakout. Leave the TCM disconnected.
4. Check for short-to-ground on wire 162.
Were any shorts or wiring defects found? | Go to Step 8 | Go to Step 7 |
| 7 | 1. Turn OFF the ignition.
2. Using a DVOM, check for continuity when switch is depressed and no continuity when switch is released.
Does the switch close when depressed and open when released? | Go to Step 9 | Go to Step 8 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0703 Brake Switch Circuit Malfunction (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harnesses and vehicle input/output switch repair. Harness and switch repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring or switch. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9 | 1. Turn OFF the ignition.
2. Connect the 80-way connector, if removed in Step 6.
3. Install Allison DOC™ For PC–Service Tool.
4. Turn ON the ignition.
5. Using Allison DOC™ For PC–Service Tool Data Bus Viewer, observe status of Service Brake Switch. Consult Allison DOC™ For PC–Service Tool User’s Guide (GN3433EN) for instructions on using Data Bus Viewer. On Data Bus Viewer, does brake switch show ON when brake pedal is depressed and OFF when brake pedal is released? | Go to Diagnostic Aids | Go to Step 10 |
| 10 | NOTE: Allison Transmission is not responsible for data link messages that originate in other transmission controllers. Repairs not associated with the transmission controller are not covered by Allison Transmission warranty. Coordinate with the vehicle or engine OEM to correct the cause of the inconsistent service brake switch status message. Is the repair complete? | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Use Allison DOC™ For PC–Service Tool to monitor service brake status.
3. Drive the vehicle under conditions noted in failure records.
4. Confirm with the service tool in the test passed section that the diagnostic test was run. Did the DTC return? | Begin the diagnosis again. | System OK |
Circuit Description

The 3000 and 4000 Product Family transmission control module (TCM) can receive input from a strip-type shift selector. This type of shift selector communicates with the TCM via 4-bit parallel data wires. The strip shift selector button position determines the switch state (low or high voltage) of each parallel data wire. The TCM interprets each particular combination of switch states into a specific range selection, i.e. Reverse, Neutral, and DRIVE. The TCM sets a DTC P0708 if the switch state of the four parallel data wires does not agree with a valid switch combination.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- The components are powered and engine speed is greater than 200 rpm and less than 7500 rpm.

DIAGNOSTIC TROUBLE CODES (DTC)

Conditions for Setting the DTC

DTC PO708 sets when the TCM detects an invalid parallel data message from a strip-type shift selector.

Actions Taken When the DTC Sets

When DTC P0708 is active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- The TCM ignores invalid strip shift selector inputs.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycle without failure.

Diagnostic Aids

- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing the failure mode when DTC was set.

- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.

- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

1. This step tests for the proper function of the strip shift selector.
2. This step measures the switch states (low or high voltage) for each button position.
3. This step tests for wiring defects in the OEM wiring harness.
Diagnostic Trouble Codes (DTC)

DTC P0708 Transmission Range Sensor Circuit High Input

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Turn ON the ignition. Leave the engine OFF.
3. Record the failure records.
4. Using Allison DOC™ For PC–Service Tool, monitor “STRIP SELECTOR OUTPUT PATTERN” for the affected strip shift selector.
5. Toggle through each button position while observing the Allison DOC™ For PC–Service Tool display.
Does “STRIP SELECTOR OUTPUT PATTERN” status match the actual shift selector button position? | | Go to Diagnostic Aids | Go to Step 3 |
| 3 | 1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors.
3. Turn ON ignition. Leave engine OFF.
4. Using a DVOM at J 47275-1 TCM Overlay, determine the state (High or Low) of each parallel data wire by measuring the following voltages. Record voltages <1V as Low and voltages >3V as High.
• Between pin 73 (SS-1) and isolated ground
• Between pin 53 (SS-2) and isolated ground
• Between pin 14 (SS-4) and isolated ground
• Between pin 38 (SS-P) and isolated ground
5. Toggle through each strip selector button position that displays a faulty output pattern and measure voltages at pins listed in sub-step 4 above.
6. Compare the switch states (low or high voltage) obtained in sub-steps 4 and 5 with the Strip Shift Selector Parallel data in Table 6–9.
7. Note if any wire is not in the proper switch state.
Do the switch states (low or high voltage) match the valid switch states shown in Table 6–9 for all button positions? | Refer to Strip Shift Selector Parallel Data Table 6–9 | Go to Diagnostic Aids | Go to Step 4 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0708 Transmission Range Sensor Circuit High Input (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 4 | NOTE: Review Section 4—Wire Test Procedures before performing the following steps.
1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Disconnect the strip shift selector.
4. Physically inspect the wiring between the strip-type shift selector and the TCM.
5. Using a DVOM at magnetic overlay, test for opens, wire-to-wire shorts, and shorts-to-ground for any wire found to be in the incorrect switch state (low or high voltage) in Step 3 above.
Were any wiring defects found? | Go to Step 5 | Go to Step 6 |
| 5 | NOTE: The vehicle OEM has responsibility for all external harness repair. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | Go to Step 7 |
| 6 | Replace the shift selector.
Is the replacement complete? | Go to Step 7 |
| 7 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records.
Did the DTC return? | Begin the diagnosis again.
Go to Step 1 | System OK |

Table 6–9.

<table>
<thead>
<tr>
<th>Button</th>
<th>Sel Out</th>
<th>SS-1</th>
<th>SS-2</th>
<th>SS-4</th>
<th>SS-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>REVERSE</td>
<td>Low**</td>
<td>Low**</td>
<td>Low**</td>
<td>High***</td>
</tr>
<tr>
<td>N</td>
<td>NEUTRAL</td>
<td>Low**</td>
<td>High***</td>
<td>High***</td>
<td>High***</td>
</tr>
<tr>
<td>D</td>
<td>DRIVE-A</td>
<td>Low**</td>
<td>Low**</td>
<td>High***</td>
<td>Low**</td>
</tr>
<tr>
<td>3*</td>
<td>DRIVE-B</td>
<td>High***</td>
<td>Low**</td>
<td>High***</td>
<td>High***</td>
</tr>
<tr>
<td>2*</td>
<td>DRIVE-C</td>
<td>High***</td>
<td>Low**</td>
<td>Low**</td>
<td>Low**</td>
</tr>
<tr>
<td>1*</td>
<td>DRIVE-D</td>
<td>High***</td>
<td>High***</td>
<td>Low**</td>
<td>High***</td>
</tr>
</tbody>
</table>

*Six-button shift selectors only
**Low is <1V
***High is >3V

Copyright © 2005 General Motors Corp.
DTC P070C Transmission Fluid Level Sensor Circuit—Low Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TCM
- Retarder Request Signal
- 5V Sensor Voltage
- Throttle Position or RTDR Pressure Signal
- Analog Return
- Retarder Temp
- Engine Temp
- Engine Water Temp
- Oil Level Sensor
- Sump Temp
- PSI Diagnostic Pressure Switch

PWM Throttle Source

Retarder Request Sensor (Resistance Module)

Transmission
- Analog Return
- Oil Level Hall Effect
- Sump Temp
- PSI

* Normally Closed
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P070C Transmission Fluid Level Sensor Circuit—Low Input

Circuit Description
The transmission control module (TCM) can be calibrated to receive a transmission fluid level signal from an oil level sensor (OLS). The TCM is connected to the OLS by:
- a reference voltage wire,
- retarder request signal wire, and
- analog ground wire.

The TCM provides a 5V reference voltage to the OLS. A microprocessor in the OLS produces a signal voltage that is proportional to the level of fluid in the transmission sump. The TCM interprets this voltage as transmission fluid level.

Conditions for Running the DTC
Engine speed is greater than 1500 rpm.

Conditions for Setting the DTC
DTC P070C sets if the TCM is calibrated to receive the OLS signal, and the signal voltage is less than 0.1V for six consecutive samples.

Actions Taken When the DTC Sets
When DTC P070C is active, the following conditions will occur:
- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light
- The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history.
- The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P070C indicates the TCM has detected a voltage signal from the OLS in the low error zone. The code can be caused by:
 - Extremely low transmission fluid level
 - Faulty external wiring harness
 - Faulty connections to the OLS
 - Faulty internal wiring harness
 - Faulty OLS
 - Faulty TCM.
- DTC P070C can be caused by an open or short-to-ground in either the 5V reference wire 112 or transmission fluid level signal wire 116. The OLS shares the common 5V reference voltage wire with the optional retarder request sensor and throttle position sensor (TPS). An open or short-to-ground in the common 5V reference wire causes a “sensor failed low” code for the other devices as well. An open or short-to-ground on wire 116 will cause a DTC P070C only.
DIAGNOSTIC TROUBLE CODES (DTC)

- Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for an active DTC.
4. This step tests for proper 5V reference voltage to OLS.
5. This step tests for opens or short-to-ground on wire 112.
6. This step tests for TCM function and OLS signal circuit integrity.

DTC P070C Transmission Fluid Level Sensor Circuit—Low Input

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Consult mechanic's tips and perform a manual fluid check procedure. Adjust as necessary. Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Adjust as necessary. Go to Step 3</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Clear the DTC. Attempt to duplicate same operating conditions observed in failure records.

NOTE: This DTC indicates the OLS signal is below a set voltage for a set number of samples. It may also indicate an open or short-to-ground in either the 5V reference wire 112 or OLS signal wire 116.

Did DTC P070C return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Turn OFF the ignition.
2. Disconnect the external wiring harness from the 20-way transmission connector.
3. Turn ON the ignition.
4. Using a DVOM, measure the voltage between pin 16 (5V reference wire 112) and pin 19 (analog return wire 158) at the external harness 20-way connector.

Is the voltage within specification? | 4.64–5.36V | Go to Step 6 | Go to Step 5 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P070C Transmission Fluid Level Sensor Circuit—Low Input *(cont’d)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td>Go to Step 8</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td></td>
<td>2. Inspect the routing of 5V reference wire 112 and analog return wire 158 between the TCM and OLS sensor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Disconnect the 80-way connector from the TCM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Disconnect the TPS and RMR, if installed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Test for opens and shorts-to-ground on wire 112.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Was chafing or wire damage found?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition.</td>
<td>4.64–5.36V</td>
<td>Go to Step 9</td>
<td>Go to Step 7</td>
</tr>
<tr>
<td></td>
<td>2. Connect the 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install the Allison DOC™ For PC–Service Tool.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Turn ON the ignition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Verify the transmission 20-way connector is disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Observe OLS voltage on Allison DOC™ For PC–Service Tool while jumpering between pin 16 (5V reference wire 112) and pin 15 (OLS signal wire 116) in the external harness 20-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the voltage within specifications?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td>Go to Step 8</td>
<td>Go to Step 16</td>
</tr>
<tr>
<td></td>
<td>2. Inspect the routing of the OLS signal wire 116 between the TCM and OLS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Disconnect the 80-way connector from the TCM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Connect the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM-side disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Test for opens and shorts-to-ground on wire 116.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Was chafing or wire damage found?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.</td>
<td></td>
<td>Go to Step 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coordinate with the vehicle OEM to repair or replace the vehicle wiring.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the repair complete?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Inspect the transmission 20-way connector pins 15, 16, and 19 for loose or out-of-position terminals.</td>
<td></td>
<td>Go to Step 10</td>
<td>Go to Step 11</td>
</tr>
<tr>
<td></td>
<td>Were any loose or out-of-position terminals founds?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Repair or replace any defective terminals.</td>
<td></td>
<td>Go to Step 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the repair complete?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P070C Transmission Fluid Level Sensor Circuit—Low Input (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 11 | 1. Consult appropriate transmission service manual and remove the control module from the transmission.
 2. Remove OLS from channel plate.
 3. Connect the external harness at the 20-way connector.
 4. Install the Allison DOC™ For PC–Service Tool.
 5. Turn ON the ignition. Leave the ignition OFF.
 6. Invert the OLS and observe OLS voltage.
 Does Allison DOC™ For PC–Service Tool OLS voltage jump to 5V? | 4.64–5.36V | Go to Step 15 | Go to Step 12 |
| 12 | 1. Inspect internal wiring harness wires 112, 116, and 158.
 2. Test for opens and shorts-to-ground in wires 112 and 116 in the internal wiring harness.
 Were there any wiring defects? | Go to Step 13 | Go to Step 14 |
| 13 | Repair or replace the internal wiring harness.
 Is the repair complete? | Go to Step 15 |
| 14 | Replace the OLS.
 Is the replacement complete? | Go to Step 15 |
| 15 | Install the control module to the transmission if removed in Step 11. | Go to Step 17 |
| 16 | **NOTE:** In most cases, the TCM is not at fault.
 Investigate thoroughly before replacing the TCM.
 Refer to TCM diagnostic procedure, Section 3–6.
 Is Section 3–6 complete? | Go to Step 17 |
| 17 | In order to verify your repair:
 1. Clear the DTC.
 2. Use Allison DOC™ For PC–Service Tool to monitor OLS level and voltage.
 3. Confirm with Allison DOC™ For PC–Service Tool in the test passed section that the diagnostic test was run.
 Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P070D Transmission Fluid Level Sensor Circuit—High Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

TO RETARDER CONTROL DEVICES

TCM

- RETARDER REQUEST SIGNAL
- 5V SENSOR VOLTAGE
- THROTTLE POSITION OR RTDR PRESSURE SIGNAL
- ANALOG RETURN
- RETARDER TEMP
- ENGINE WATER TEMP
- OIL LEVEL SENSOR
- SUMP TEMP

ANALOG RETURN

REFERENCES

- OIL LEVEL
- HALL EFFECT
- SUMP TEMP
- PS1
- NC*

* NORMALLY CLOSED

V09569.01.00

DIAGNOSTIC TROUBLE CODES (DTC)

DTC P070D Transmission Fluid Level Sensor Circuit—High Input

Circuit Description
The Transmission Control Module (TCM) can be calibrated to receive a transmission fluid level signal from an oil level sensor (OLS). The TCM is connected to the OLS by three wires: 1) a reference voltage, 2) transmission fluid level signal, and 3) analog ground. The TCM provides a 5V reference voltage to the OLS. A microprocessor in the OLS produces a signal voltage that proportional to level of fluid in the transmission sump. The TCM interprets this voltage as transmission fluid level.

Conditions for Running the DTC
Engine speed is greater than 1500 rpm.

Conditions for Setting the DTC
DTC P070D sets if the TCM is calibrated to receive the OLS signal, and the signal voltage is greater than 5.0V for 6 consecutive samples.

Actions Taken When the DTC Sets
When DTC P070D is active, the following conditions will occur:
• The TCM does not illuminate the CHECK TRANS light.
• DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• DTC P070D indicates the TCM has detected a voltage signal from the OLS in the high error zone. The code can be caused by:
 — Extremely high transmission fluid level
 — Faulty external wiring harness
 — Faulty connections to the OLS
 — Faulty internal wiring harness
 — A faulty OLS
 — A faulty TCM.

• DTC P070D can be caused by a short-to-battery on the 5V reference wire 112 or OLS signal wire 116. DTC P070D can also be caused by an open in the analog return wire 158. The OLS shares a common 5V reference voltage wire 112 with the optional retarder request sensor and throttle position sensor (TPS). A short-to-battery on the 5V reference wire or an open in the analog return wire causes a “sensor failed high” code for the other devices as well. A short-to-battery on the OLS signal wire causes a DTC P070D only.

• Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
Diagnostic Trouble Codes (DTC)

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

1. This step tests for proper transmission fluid level.
2. This step tests for an active DTC.
3. This step tests for proper 5V reference voltage to OLS.
4. This step tests for shorts-to-battery on wire 112 and open on wire 158.
5. This step tests for shorts-to-battery on wire 116.
6. This step tests for loose or out-of-position terminals in 20-way connector.
7. This step tests OLS functionality.
8. This step tests for a defective internal wiring harness.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Consult mechanic’s tips and perform a manual fluid check procedure. Adjust as necessary. Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Adjust as necessary. Go to Step 3</td>
</tr>
</tbody>
</table>
| 3 | Install the Allison DOC™ For PC–Service Tool.
1. Start the engine.
2. Record the failure records.
3. Clear the DTC. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates the OLS signal is above a set voltage for a set number of samples. It may also indicate a short-to-battery in either the 5V reference wire 112 or OLS signal wire 116, or an open in the analog return wire 158. Did DTC P070D return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | Turn OFF the ignition.
1. Disconnect the external wiring harness from the 20-way transmission connector.
2. Turn ON the ignition.
4. Using a DVOM, measure the voltage between pin 16 (5V reference wire 112) and pin 19 (analog return wire 158) at the external harness 20-way connector. Is the voltage within specification? | 4.64–5.36V | Go to Step 6 | Go to Step 5 |
DTC P070D Transmission Fluid Level Sensor Circuit—High Input (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn OFF the ignition.
2. Inspect the routing of 5V reference wire 112 and analog return wire 158 between the TCM and OLS sensor.
3. Disconnect the 80-way connector from the TCM.
4. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
5. Disconnect the TPS and RMR, if installed.
6. Test for shorts-to-battery and pin-to-pin shorts on wire 112.
7. Test for an open in wire 158.
Was chafing or wire damage found? | | Go to Step 8 | Go to Step 6 |
| 6 | 1. Turn OFF the ignition.
2. Reconnect the TCM 80-way connector.
3. Install the Allison DOC™ For PC–Service Tool.
4. Turn ON the ignition.
5. Verify the transmission 20-way connector is disconnected.
6. Observe OLS voltage on Allison DOC™ For PC–Service Tool.
Is voltage approximately 0V? | <0.32V | Go to Step 9 | Go to Step 7 |
| 7 | 1. Turn OFF the ignition.
2. Inspect the routing of the OLS signal wire 116 between the TCM and OLS.
3. Disconnect the 80-way connector from the TCM.
4. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
5. Test for shorts-to-battery and pin-to-pin shorts in wire 116.
Was chafing or wire damage found? | | Go to Step 8 | Go to Step 16 |
| 8 | NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | | Go to Step 17 |
| 9 | Inspect the transmission 20-way connector pins 15, 16, and 19 for loose or out-of-position terminals.
Were any loose or out-of-position terminals found? | | Go to Step 10 | Go to Step 11 |
| 10 | Repair or replace any defective terminals.
Is the repair complete? | | Go to Step 17 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P070D Transmission Fluid Level Sensor Circuit—High Input (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 11 | 1. Consult appropriate transmission service manual and remove the control module from the transmission.
2. Remove OLS from channel plate.
3. Reconnect the external harness at the 20-way connector.
4. Install the Allison DOC™ For PC–Service Tool.
5. Turn ON the ignition. Leave the engine OFF.
6. Remove the OLS up away from any transmission fluid and observe OLS voltage on Allison DOC™ For PC–Service Tool.
Is the voltage in specification? | <0.32V | Go to Step 15 | Go to Step 12 |
| 12 | 1. Inspect internal wiring harness wires 112, 116, and 158.
2. Test for pin-to-pin shorts in wire 112 and 116 or opens in wire 158 in the internal wiring harness.
Were there any wiring defects? | | Go to Step 13 | Go to Step 14 |
| 13 | Repair or replace the internal wiring harness.
Is the repair complete? | | Go to Step 15 | |
| 14 | Replace the OLS.
Is the replacement complete? | | Go to Step 15 | |
| 15 | Reinstall the control module to the transmission if removed in Step 11.
Is the reinstallation complete? | | Go to Step 17 | |
| 16 | **NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.**
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | | Go to Step 17 | |
| 17 | In order to verify your repair:
1. Clear the DTC.
2. Use Allison DOC™ For PC–Service Tool to monitor OLS level and voltage.
3. Confirm with the service tool in the test passed section that the diagnostic test was run.
Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DTC P0711 Transmission Fluid Temperature Sensor Circuit Performance

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

TCM

- RETARDER REQUEST SIGNAL
- 5V SENSOR VOLTAGE
- THROTTLE POSITION OR RTDR PRESSURE SIGNAL
- ANALOG RETURN
- RETARDER TEMP
- ENGINE TEMP
- ENGINE WATER TEMP
- OIL LEVEL SENSOR
- SUMP TEMP
- PS1 DIAGNOSTIC PRESSURE SWITCH

* NORMALLY CLOSED
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0711 Transmission Fluid Temperature Sensor Circuit Performance

Circuit Description
The Transmission Fluid Temperature (TFT) sensor is incorporated into the internal wiring harness. The TFT sensor is a thermistor that changes its resistance value based on the temperature of the transmission fluid. The Transmission Control Module (TCM) supplies a 5V reference voltage signal to the TFT sensor and measures the voltage drop in the circuit. When the transmission is cold, the sensor resistance is high and the TCM detects high signal voltage. As the transmission fluid temperature warms to normal operating temperature, the resistance and the signal voltage decrease. The TCM uses this information to control shift quality.

If the TCM detects the TFT sensor resistance has no change or an unrealistic change in a short amount of time, or multiple changes within seconds, DTC P0711 sets.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- The components are powered and engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
- Engine is running.
- A valid startup temperature is detected.

Conditions for Setting the DTC
One of the following conditions occur:
- The TCM detects a temperature change that is under a calibration limit when compared to samples of the minimum and maximum temperature values.
- The TFT has an unrealistic temperature change of more than 10°C (50°F) for 10 occurrences.
- The temperature from start-up changes by 40°C (104°F) or more within a duration of 6 or more seconds.

Actions Taken When the DTC Sets
When DTC P0711 is active, the following conditions will occur:
- The CHECK TRANS light is illuminated.
- DTC is stored in TCM history.
- TCM uses calibration default for temperature values.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOCTM For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- Review Appendix A for diagnosing intermittent electrical fault conditions.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

You may have to drive the vehicle in order to experience a fault.

Transmission fluid temperature on Allison DOC™ For PC–Service Tool should rise steadily during warmup cycles and then stabilize.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level and condition.
3. This step verifies which condition has set the DTC P0711.
4. This step tests for the proper 5V reference voltage at TCM with OEM harness connected.
5. This step tests for proper 5V reference voltage at TCM without OEM harness.
6. This step tests for wire-to-wire shorts, shorts-to-ground, or an open condition on wire 154.
7. This step tests for proper system circuit resistance value.
8. This step tests the resistance value of the internal harness and TFT sensor.
10. This step tests the resistance value of the internal TFT sensor.

DTC P0711 Transmission Fluid Temperature Sensor Circuit Performance

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to the appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. With the engine OFF, turn ON the ignition. 3. Record the failure record. 4. Clear the DTCs. 5. Monitor the TFT on Allison DOC™ For PC–Service Tool. 6. Drive the vehicle and observe Allison DOC™ For PC–Service Tool for one of the following conditions: • No Transmission temperature change. • An unrealistic transmission temperature change of greater than 1.5°C (2.7°F) in one second. Did either of the fail conditions occur?</td>
<td>1.5°C (2.7°F) per second</td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0711 Transmission Fluid Temperature Sensor Circuit Performance (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 4 | 1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout at the TCM.
3. Disconnect the transmission 20-way connector.
4. Turn ON the ignition.
5. At J 47275-1 TCM Overlay, connect a DVOM.
Measure voltage between pin 54 and pin 58.
Is the voltage within the specified value? | 4.75–5.0V | Go to Step 7 | Go to Step 5 |
| 5 | 1. Turn OFF the ignition.
2. Disconnect the 16-pin bypass connector on the J 47275 TCM Breakout.
3. Turn ON the ignition.
4. Using a DVOM at J 47275-1 TCM Overlay, measure voltage between pin 54 and pin 58.
Is the voltage within the specified value? | 4.75–5.0V | Go to Step 6 | Go to Step 13 |
| 6 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Disconnect the transmission 20-way connector, if it was not disconnected in Step 4.
4. Reconnect the 16-pin bypass connector on J 47275 TCM Breakout.
5. Using a DVOM at J 47275-1 TCM Overlay, test for opens, pin-to-pin shorts, or shorts-to-ground on wire 154.
Were any wiring defects found? | 3511–3653 Ohm at 20°C (68°F) | Go to Step 9 | Go to Diagnostic Aids |
| 7 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Connect the transmission 20-way connector.
4. At J 47275-1 TCM Overlay, connect a DVOM.
Measure resistance between pin 54 and pin 58.
Is the resistance within the specified value? | 3511–3653 Ohm at 20°C (68°F) | Go to Diagnostic Aids | Go to Step 8 |
| 8 | 1. Disconnect the 20-way connector at the transmission and install J 47279 Transmission Breakout. Connect only the J 47279 Transmission Breakout to the transmission. The vehicle side of the harness should not be connected for this test.
2. At J 47279-1 Transmission Overlay, connect a DVOM. Measure resistance between pin 18 and pin 19 in transmission 20-way connector.
Is the resistance within the specified value? | 3511–3653 Ohm at 20°C (68°F) | Go to Step 9 | Go to Step 10 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0711 Transmission Fluid Temperature Sensor Circuit Performance *(cont'd)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harnesses repair. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>3511–3653 Ohm at 20°C (68°F) Refer to Appendix Q</td>
<td>Go to Step 11</td>
<td>Go to Step 12</td>
</tr>
<tr>
<td>10</td>
<td>1. Remove the hydraulic control module assembly. 2. Disconnect the sump thermistor from the internal wiring harness. 3. Using a DVOM, measure thermistor resistance at pins A and B. Is the resistance within the specified value?</td>
<td>3511–3653 Ohm at 20°C (68°F) Refer to Appendix Q</td>
<td>Go to Step 11</td>
<td>Go to Step 12</td>
</tr>
<tr>
<td>11</td>
<td>Replace the internal harness (refer to appropriate mechanic’s tips). Is the replacement complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Replace the sump thermistor (refer to appropriate mechanic’s tips). Is the replacement complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Using Allison DOC™ For PC–Service Tool, monitor the transmission fluid temperature. 3. Drive the vehicle under normal operating conditions. Watch for significant changes in TFT. Did the DTC return?</td>
<td></td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
</tr>
</tbody>
</table>
DTC P0712 Transmission Fluid Temperature Sensor Circuit Low Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

ANALOG RETURN

OIL LEVEL

HALL EFFECT

SUMP TEMP

PSI

* NORMALLY CLOSED

PS1 DIAGNOSTIC PRESSURE SWITCH

TCM

RETARDER REQUEST SIGNAL

5V SENSOR VOLTAGE

THROTTLE POSITION OR RTDR PRESSURE SIGNAL

ANALOG RETURN

RETARDER TEMP

ENGINE WATER TEMP

ENGINE TEMP

WIRE 156

WIRE 112

WIRE 144

WIRE 158

WIRE 175

WIRE 135

WIRE 158

WIRE 112

WIRE 116

WIRE 154

WIRE 177
Circuit Description
The Transmission Fluid Temperature (TFT) sensor is incorporated into the internal wiring harness. The TFT sensor is a thermistor that changes its resistance value based on the temperature of the transmission fluid. The Transmission Control Module (TCM) supplies a 5V reference voltage signal to the TFT sensor and measures the voltage drop in the circuit. When the transmission is cold, the sensor resistance is high and the TCM detects high signal voltage. As the transmission fluid temperature warms to normal operating temperature, the resistance and the signal voltage decrease. The TCM uses this information to control shift quality.

Conditions for Running the DTC
• The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
• The components are powered and engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
• When engine coolant temperature sensor is present, engine is running. If engine runtime is less than 10 minutes, then engine coolant temperature must be above 20°C (68°F) for more than 20 seconds.

Conditions for Setting the DTC
The TCM detects transmission fluid temperature greater than a calibrated value for more than 2.5 seconds.

NOTE: The TCM is detecting voltage. An extremely low input voltage implies low thermistor resistance, which corresponds to an unrealistically high transmission fluid temperature measurement.

Actions Taken When the DTC Sets
When DTC P0712 is active, the following conditions will occur:
• The CHECK TRANS light is illuminated.
• DTC is stored in TCM history.
• TCM uses calibration default for temperature values.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• Review Appendix A for diagnosing intermittent electrical fault conditions.
• Inspect the wiring for poor electrical connections at the TCM and service brake switch. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
DIAGNOSTIC TROUBLE CODES (DTC)

- You may have to drive the vehicle in order to experience a fault.
- DTC P0712 may be caused by a short-to-ground on wire 154.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

1. This step tests for proper transmission fluid level and condition.
2. This step verifies which condition has set the DTC P0712.
3. This step tests for proper 5V reference voltage at TCM with OEM harness connected.
4. This step tests for wire-to-wire shorts, shorts-to-ground, or an open on wire 154.
5. This step tests for 5V reference voltage without OEM harness.
6. This step tests for proper system circuit resistance value.
7. This step tests for proper system circuit resistance value.
8. This step tests the resistance value of the internal harness and TFT sensor.
9. This step tests the resistance value of the internal TFT sensor.

DTC P0712 Transmission Fluid Temperature Sensor Circuit Low Input

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips).</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
2. With the engine OFF, turn ON the ignition.
3. Record the failure record.
4. Clear the DTCs.
5. Monitor the TFT on Allison DOC™ For PC–Service Tool.
6. Drive the vehicle and observe Allison DOC™ For PC–Service Tool for an unrealistically high temperature condition.
Is the Allison DOC™ For PC–Service Tool transmission fluid temperature greater than 128°C (262°F)? | >128°C (262°F) | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout at the TCM.
3. Disconnect the transmission 20-way connector.
4. Turn ON the ignition.
5. At J 47275-1 TCM Overlay, connect a DVOM.
Measure voltage between pins 54 and 58.
Is the voltage within the specified value? | 4.75 to 5.0V | Go to Step 6 | Go to Step 5 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0712 Transmission Fluid Temperature Sensor Circuit Low Input (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn OFF the engine.
2. Disconnect the 16-pin bypass connector on the J 47275 TCM Breakout.
3. Turn ON the ignition.
4. Using a DVOM at J 47275-1 TCM Overlay, measure voltage between pin 54 and 58.
Is the voltage within the specified value? | 4.75–5.0V | Go to Step 6 | Go to Step 13 |
| 6 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Disconnect the transmission 20-way connector, if it was not disconnected in Step 4.
4. Reconnect the 16-pin bypass connector on J 47275 TCM Breakout.
5. Using a DVOM at J 47275-1 TCM Overlay, test for pin-to-pin shorts, or shorts-to-ground on wire 154.
Were any wiring defects found? | | Go to Diagnostic Aids | Go to Step 7 |
| 7 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Connect the transmission 20-way connector.
4. At J 47275-1 TCM Overlay, connect a DVOM. Measure resistance between pin 54 to pin 58.
Is the resistance within the specified value? | 3511–3653 Ohm at 20°C (68°F)
Refer to Appendix Q | Go to Step 9 | Go to Step 10 |
| 8 | 1. Disconnect the 20-way connector at the transmission and install J 47279 Transmission Breakout. Connect only the J 47279 Transmission Breakout to the transmission. The vehicle side of the harness should not be connected for this test.
2. At J 47279-1 Transmission Overlay, connect a DVOM. Measure resistance between pin 18 and pin 19 in transmission 20-way connector.
Is the resistance within the specified value? | 3511–3653 Ohm at 20°C (68°F)
Refer to Appendix Q | Go to Step 11 | Go to Step 12 |

NOTE: The vehicle OEM has responsibility for all external wiring harnesses repair. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.

Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete?

| 9 | Go to Step 14 |
| 10 | 1. Remove the hydraulic control module assembly.
2. Disconnect the sump thermistor from the internal wiring harness.
3. Using a DVOM, measure thermistor resistance at pins A and B.
Is the resistance within the specified value? | 3511–3653 Ohm at 20°C (68°F)
Refer to Appendix Q | Go to Step 11 | Go to Step 12 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0712 Transmission Fluid Temperature Sensor Circuit Low Input (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Replace the internal harness (refer to appropriate mechanic’s tips). Is the replacement complete?</td>
<td></td>
<td></td>
<td>Go to Step 14</td>
</tr>
<tr>
<td>12</td>
<td>Replace the sump thermistor (refer to appropriate mechanic’s tips). Is the replacement complete?</td>
<td></td>
<td></td>
<td>Go to Step 14</td>
</tr>
<tr>
<td>13</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td></td>
<td>Go to Step 14</td>
</tr>
<tr>
<td>14</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Using Allison DOC™ For PC–Service Tool, monitor the transmission fluid temperature. 3. Drive the vehicle under normal operating conditions. Watch for significant changes in TFT. Did the DTC return?</td>
<td></td>
<td></td>
<td>Begin the diagnosis again. Go to Step 1</td>
</tr>
</tbody>
</table>
DTC P0713 Transmission Fluid Temperature Sensor Circuit High Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

ANALOG RETURN

OIL LEVEL

HALL EFFECT

SUMP TEMP PS1 NC*

* NORMALLY CLOSED

TCM

RETARDER REQUEST SIGNAL
5V SENSOR VOLTAGE
THROTTLE POSITION OR RTDR PRESSURE SIGNAL
ANALOG RETURN
RETARDER TEMP
ENGINE TEMP
ENGINE WATER TEMP
OIL LEVEL SENSOR
SUMP TEMP
PS1 DIAGNOSTIC PRESSURE SWITCH

WIRE 156
WIRE 112
WIRE 144
WIRE 158
WIRE 175
WIRE 135
WIRE 158
WIRE 112
WIRE 116
WIRE 154
WIRE 177
WIRE 158
WIRE 112
WIRE 116
WIRE 154
WIRE 177
WIRE 158
WIRE 112
WIRE 116
WIRE 154
WIRE 177
WIRE 158
WIRE 112
WIRE 116
WIRE 154
WIRE 177
WIRE 158
WIRE 112
WIRE 116
WIRE 154
WIRE 177
WIRE 158
WIRE 112
WIRE 116
WIRE 154
WIRE 177
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0713 Transmission Fluid Temperature Sensor Circuit High Input

Circuit Description
The Transmission Fluid Temperature (TFT) sensor is incorporated into the internal wiring harness. The TFT sensor is a thermistor that changes its resistance value based on the temperature of the transmission fluid. The Transmission Control Module (TCM) supplies a 5V reference voltage signal to the TFT sensor and measures the voltage drop in the circuit. When the transmission is cold, the sensor resistance is high and the TCM detects high signal voltage. As the transmission fluid temperature warms to normal operating temperature, the resistance and the signal voltage decrease. The TCM uses this information to control shift quality.

Conditions for Running the DTC
• The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
• The components are powered and engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
• When engine coolant temperature sensor is present, engine is running. If engine runtime is less than 10 minutes, then engine coolant temperature must be above 20ºC (68ºF) for more than 20 seconds.

Conditions for Setting the DTC
The TCM detects transmission fluid temperature less than or equal to a calibrated value for more than 2.5 seconds.

NOTE: The TCM is detecting voltage. A high input voltage implies high thermistor resistance, which corresponds to an extremely cold transmission fluid temperature measurement.

Actions Taken When the DTC Sets
When DTC P0713 is active, the following conditions will occur:
• The CHECK TRANS light is illuminated.
• DTC is stored in TCM history.
• TCM uses calibration default for temperature values.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• DTC P0713 may be caused by a short-to-battery on wire 154. If DTC P0713 is accompanied by a DTC P2185 and/or P2743, the problem is most likely a short-to-battery on wire 154, wire 135, or wire 175.
• DTC code P0713 may also be caused by an open in wire 154 or 158.
• Review Appendix A for diagnosing intermittent electrical fault conditions.
• Inspect the wiring for poor electrical connections at the TCM and service brake switch. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

• You may have to drive the vehicle in order to experience a fault.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level and condition.

3. This step verifies which condition has set the DTC P0712.

4. This step tests for the proper 5V reference voltage at TCM with OEM harness connected.

5. This step tests for proper 5V reference voltage at TCM without the OEM harness.

6. This step tests for wiring defects in external harness.

7. This step tests for proper system circuit resistance value.

8. This step tests the resistance value of the internal harness and TFT sensor.

10. This step tests the resistance value of the internal TFT sensor.

DTC P0713 Transmission Fluid Temperature Sensor Circuit High Input

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOCTM For PC–Service Tool. With the engine OFF, turn ON the ignition. 2. Record the failure record. 3. Clear the DTCs. 4. Monitor the TFT on Allison DOCTM For PC–Service Tool. 5. Drive the vehicle and observe Allison DOCTM For PC–Service Tool for an unrealistically low temperature condition. Is the Allison DOCTM For PC–Service Tool transmission fluid temperature less than –45°C (–49°F)?</td>
<td>–45°C (–49°F)</td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition. 2. Install J 47275 TCM Breakout at the TCM. 3. Disconnect the transmission 20-way connector. 4. Turn ON the ignition. 5. Using a DVOM at J 47275-1 TCM Overlay, measure voltage between pins 54 and 58. Is the voltage within the specified value?</td>
<td>4.75 to 5.0V</td>
<td>Go to Step 7</td>
<td>Go to Step 5</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0713 Transmission Fluid Temperature Sensor Circuit High Input (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn OFF the ignition.
2. Disconnect the 16-pin bypass connector on J 47275 TCM Breakout.
3. Turn ON the ignition.
4. Using a DVOM at J 47275-1 TCM Overlay, measure voltage between pin 54 and 58.
Is the voltage within the specified value? | 4.75–5.0V | Go to Step 6 | Go to Step 13 |
| 6 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Reconnect the 16-pin bypass connector on J 47275 TCM Breakout.
4. Disconnect the transmission 20-way connector.
5. Disconnect the engine coolant temperature sensor and retarder temperature sensor.
6. Using a DVOM at J 47275-1 TCM Overlay, test for opens in wires 154 and 158.
7. Also test for wire-to-wire shorts or shorts-to-battery on wire 135, wire 154, or wire 175.
Were any wiring defects found? | | Go to Step 9 | Go to Diagnostic Aids |
| 7 | 1. Turn OFF the ignition.
2. Verify the OEM-side harness is connected to the J 47275 TCM Breakout. Leave the TCM disconnected.
3. Reconnect the transmission 20-way connector.
4. Using a DVOM at J 47275-1 TCM Overlay, measure the resistance between pin 54 and 58.
Is the resistance within the specified value? | 3511–3653 Ohm at 20°C (68°F)
Refer to Appendix Q | Go to Step 8 | Go to Step 9 |
| 8 | 1. Disconnect the 20-way connector at the transmission and install J 47279 Transmission Breakout. Connect the J 47279 Transmission Breakout to the transmission only. The vehicle side of the harness should not be connected for this test.
2. Using a DVOM at J 47279-1 Transmission Overlay, measure resistance between pins 18 and 19 in the 20-way connector.
Is the resistance within the specified value? | 3511–3653 Ohm at 20°C (68°F)
Refer to Appendix Q | Go to Step 9 | Go to Step 10 |
| 9 | **NOTE:** The vehicle OEM has responsibility for all external wiring harnesses repair. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | | | Go to Step 14 |
DTC P0713 Transmission Fluid Temperature Sensor Circuit High Input (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1. Remove the hydraulic control module assembly.
2. Disconnect the sump thermistor from the internal wiring harness.
3. Using a DVOM, measure thermistor resistance at pins A and B.
Is the resistance within the specified value?</td>
<td>3511–3653 Ohm at 20°C (68°F) Refer to Appendix Q</td>
<td>Go to Step 11</td>
<td>Go to Step 12</td>
</tr>
<tr>
<td>11</td>
<td>Replace the internal harness (refer to appropriate mechanic’s tips).
Is the replacement complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Replace the sump thermistor (refer to appropriate mechanic’s tips).
Is the replacement complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete?</td>
<td></td>
<td>Go to Step 14</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor the transmission fluid temperature.
3. Drive the vehicle under normal operating conditions. Watch for significant changes in TFT.
Did the DTC return?</td>
<td></td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>

Step Action Value(s) Yes No

Go to Step 11 Go to Step 12

Go to Step 14

Go to Step 14

Go to Step 14

| 14. In order to verify your repair: 1. Clear the DTC. 2. Using Allison DOC™ For PC–Service Tool, monitor the transmission fluid temperature. 3. Drive the vehicle under normal operating conditions. Watch for significant changes in TFT. Did the DTC return? | | | System OK |

Begin the diagnosis again. Go to Step 1
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0716 Turbine Speed Sensor Circuit Performance

3000 SERIES TURBINE SPEED SENSOR

4000 SERIES TURBINE SPEED SENSOR

SPEED SENSOR CIRCUITS
Use twisted pairs of wires

<table>
<thead>
<tr>
<th>Current Resistance (Ohms)</th>
<th>Former Resistance (Ohms)</th>
<th>TEMP (°F)</th>
<th>TEMP (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>250</td>
<td>-40</td>
<td>-40</td>
</tr>
<tr>
<td>340</td>
<td>300</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>450</td>
<td>400</td>
<td>230</td>
<td>110</td>
</tr>
</tbody>
</table>
DTC P0716 Turbine Speed Sensor Circuit Performance

Circuit Description
Speed sensors are variable reluctance devices that convert mechanical motion to an AC voltage. Each sensor consists of a wire coil wrapped around a pole piece that is adjacent to a permanent magnet. These elements are contained in a housing that is mounted adjacent to a rotating ferrous member. Two signal wires extend from one end of the housing and an exposed end of the pole piece is at the opposite end of the housing. The permanent magnet produces lines of flux around the pole piece. As a ferrous object (a rib on the rotating clutch drum) approaches and passes through the gap at the end of the pole piece, an AC voltage pulse is induced in the wire coil. The Transmission Control Module (TCM) calculates the frequency of these AC pulses and converts it to a speed value. The AC voltage generated varies from 150mV at low speed to 15V at high speed. The signal wires from the sensor are formed as twisted pairs to cancel magnetically induced fields. The cable is also shielded to protect from voltage-related fields. Using two-wire differential input at the TCM eliminates noise from other sources.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Turbine speed is above 200 rpm.
- Shift is complete and range attained is not neutral.
- For fire truck vocation, pump not pumping.

Conditions for Setting the DTC
DTC P0716 is set when one of the following three conditions occur:
- Unrealistic large changes in turbine speed. Failure is set if an unrealistic change in transmission turbine speed is detected at or above 800 rpm for 0.15 seconds.
- Noisy turbine speed. Noise is determined with two counters. A low counter is incremented when turbine speed change is below 800 rpm for 2.0 seconds. A high counter is incremented when turbine speed change is above 800 rpm. When both counters accumulate 5 events, a failure is set.
- Wires to speed sensors swapped. Failure is set if commanded range is not Neutral and oncoming clutch control is complete, and engine and turbine speed are greater than 100 rpm.

Actions Taken When the DTC Sets
When DTC P0716 is active, the following conditions will occur:
- If failure occurs while in a forward range and a shift has been completed, the transmission will remain in the current range.
- If failure occurs while in a forward range and a shift is in progress, the transmission will return to the previous range, except in post-shift state, then the transmission will continue to the commanded range.
- DTC P0716 is stored in TCM history.
- The CHECK TRANS light illuminates.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.
DIAGNOSTIC TROUBLE CODES (DTC)

Diagnostic Aids

- Inspect the wiring for poor electrical connections at the TCM and service brake switch. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

- You may have to drive the vehicle in order to experience a fault.

- If the condition is intermittent, connect the Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

- Install a known good speed sensor and see if normal function is restored to rule out an internal short or open in the sensor removed.

- Check that the speed sensor wiring consists of twisted pairs at the rate of 12 to 16 twists per 300 mm. These twists must extend the entire length of the wiring harness to within at least 50 mm of the speed sensor connector.

- Install a known good TCM, if available. If the DTC does not return, reinstall the old TCM to verify the repair.

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper ignition voltage.

3. This step tests for proper turbine speed sensor resistance at the TCM side of the harness.

4. This step tests for turbine speed sensor resistance.

DTC P0716 Turbine Speed Sensor Circuit Performance

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | Install the Allison DOC™ For PC–Service Tool.
1. Start the engine.
2. Record the failure records.
3. Clear the DTCs.
4. Using Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is voltage within specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problems (refer to DTC P0882 and P0883) |
3. Turn OFF the ignition.
2. Disconnect the 80-way connector at the TCM.
3. Using a DVOM, measure resistance between terminal pin 20 and terminal 80 at the OEM-side of the 80-way connector.
Is the speed sensor resistance within the specified value?

Refer to Speed Sensor Resistance Table 6–10

Go to Diagnostic Aids

Go to Step 4

4. Disconnect the wiring harness from the turbine speed sensor.
2. Using a DVOM, check the resistance between the speed sensor terminals.
Is the speed sensor resistance within the specified value?

Refer to Speed Sensor Resistance Table 6–10

Go to Step 5

Go to Step 6

5. **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.

Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete?

Go to Step 7

6. Replace the turbine speed sensor (refer to appropriate service manual).
Is replacement complete?

Go to Step 7

7. In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
Did the DTC return?

Begin the diagnosis again.

Go to Step 1

System OK

Table 6–10. Speed Sensor Temperature Resistance

<table>
<thead>
<tr>
<th>Current Resistance (Ohms)</th>
<th>Former Resistance (Ohms)</th>
<th>Temp °F</th>
<th>Temp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>200</td>
<td>−40</td>
<td>−40</td>
</tr>
<tr>
<td>340</td>
<td>300</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>450</td>
<td>400</td>
<td>230</td>
<td>110</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0717 Turbine Speed Sensor Circuit No Signal

<table>
<thead>
<tr>
<th>Current Resistance (Ohms)</th>
<th>Former Resistance (Ohms)</th>
<th>TEMP (°F)</th>
<th>TEMP (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>200</td>
<td>−40</td>
<td>−40</td>
</tr>
<tr>
<td>340</td>
<td>300</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>450</td>
<td>400</td>
<td>230</td>
<td>110</td>
</tr>
</tbody>
</table>

Use twisted pairs of wires

SPEED SENSOR CIRCUITS
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0717 Turbine Speed Sensor Circuit No Signal

Circuit Description
Speed sensors are variable reluctance devices that convert mechanical motion to an AC voltage. Each sensor consists of a wire coil wrapped around a pole piece that is adjacent to a permanent magnet. These elements are contained in a housing that is mounted adjacent to a rotating ferrous member. Two signal wires extend from one end of the housing and an exposed end of the pole piece is at the opposite end of the housing. The permanent magnet produces lines of flux around the pole piece. As a ferrous object (a rib on the rotating clutch drum) approaches and passes through the gap at the end of the pole piece, an AC voltage pulse is induced in the wire coil. The Transmission Control Module (TCM) calculates the frequency of these AC pulses and converts it to a speed value. The AC voltage generated varies from 150mV at low speed to 15V at high speed. The signal wires from the sensor are formed as twisted pairs to cancel magnetically induced fields. The cable is also shielded to protect from voltage-related fields. Using two-wire differential input at the TCM eliminates noise from other sources.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- For fire truck vocation, pump not pumping.
- Shifting complete.
- Reverse-to-Neutral shift not in progress.
- Engine running.
- Range attained is not Neutral.
- No hydraulic default condition due to loss of ignition voltage.
- Transmission fluid temperature above –1.1°C (30°F).
- For low turbine speed test:
 - Transmission output speed greater than or equal to 150 rpm, or
 - Transmission output speed greater than or equal to 150 rpm and engine speed greater than or equal to 400 rpm.

Conditions for Setting the DTC
DTC P0717 is set when one of the following conditions occur:
- Unrealistic large change in turbine speed. A failure pending is set if the TCM detects a change in turbine speed of more than 800 rpm. The transmission locks in current range in response to a failure pending condition.
- Unrealistic low value in turbine speed. A failure pending is set if turbine speed is detected below 61 rpm. A failure is set when turbine speed is below 61 rpm and output speed is detected above 500 rpm for more than 1 second.

Actions Taken When the DTC Sets
When DTC P0717 is active, the following conditions will occur:
- If failure occurs while in a forward range and a shift has been completed, the transmission will remain in the current range.
- If failure occurs while in a forward range and a shift is in progress, the transmission will return to the previous range, except in post-shift state, then the transmission will continue to the commanded range.
- DTC P0717 is stored in TCM history.
DIAGNOSTIC TROUBLE CODES (DTC)

- The CHECK TRANS light illuminates.
- The TCM freezes shift adapts (DNA).
- The TCM inhibits TCC engagement.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- Inspect the wiring for poor electrical connections at the TCM and service brake switch. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- You may have to drive the vehicle in order to experience a fault.
- If the condition is intermittent, connect the Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).
- Install a known good speed sensor and see if normal function is restored to rule out an internal short or open in the sensor removed.
- Check that the speed sensor wiring consists of twisted pairs at the rate of 12 to 16 twists per 300 mm. These twists must extend the entire length of the wiring harness to within at least 50 mm of the speed sensor connector.

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests ignition voltage.
3. This step tests for proper turbine speed sensor resistance at the TCM side of the harness.
4. This step tests for turbine speed sensor resistance.

DTC P0717 Turbine Speed Sensor Circuit No Signal

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
2 1. Install the Allison DOC™ For PC–Service Tool.
 2. Start the engine.
 3. Record the failure records.
 4. Clear the DTCs.
 5. Using Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is voltage within specified values?

9–18V (12V TCM)
18–32V (24V TCM)

Go to Step 3 Resolve voltage problems (refer to DTC P0882 and P0883)

3 1. Turn OFF the ignition.
 2. Disconnect the 80-way connector at the TCM.
 3. Using a DVOM, measure resistance between terminal 20 and terminal 80 in the OEM-side of the 80-way connector.
Is the speed sensor resistance within the specified value?

Refer to Speed Sensor Resistance Table 6–11

Go to Diagnostic Aids
Go to Step 4

4 1. Disconnect the wiring harness from the turbine speed sensor.
 2. Using a DVOM, check the resistance between the speed sensor terminals.
Is the speed sensor resistance within the specified value?

Refer to Speed Sensor Resistance Table 6–11

Go to Step 5
Go to Step 6

5 NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.

Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete?

Go to Step 7

6 Replace the turbine speed sensor (refer to appropriate service manual).
Is replacement complete?

Go to Step 7

7 In order to verify your repair:
 1. Clear the DTC.
 2. Drive the vehicle under normal operating conditions.
Did the DTC return?

Begin the diagnosis again. Go to Step 1 System OK

Table 6–11. Speed Sensor Temperature Resistance

<table>
<thead>
<tr>
<th>Current Resistance (Ohms) January, 2006</th>
<th>Former Resistance (Ohms) Before January, 2006</th>
<th>Temp °F</th>
<th>Temp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>200</td>
<td>–40</td>
<td>–40</td>
</tr>
<tr>
<td>340</td>
<td>300</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>450</td>
<td>400</td>
<td>230</td>
<td>110</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0719 Brake Switch ABS Input Low

ABS INPUT (−)
Use this configuration if the ABS system provides a ground (−) signal when active.

ABS INPUT (+)
Use this configuration if the ABS system provides a power (+) signal when active.

ABS ACTIVATION VIA J1939 LINK
SAE J1939 VEHICLE COMMUNICATION INTERFACE
See appropriate "Installation Schematic" installation drawing for wire and pin numbers.

All items shown, except TCM, are customer-furnished.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0719 Brake Switch ABS Input Low

Circuit Description

The Transmission Control Module (TCM) can be calibrated to receive an anti-lock brake input from either an analog input wire or the digital data link. A switched relay activated by the anti-lock brake system (ABS) controller may provide a direct input to the TCM, or the TCM can receive ABS status as a digital message over the vehicle’s communications data link.

Conditions for Running the DTC

• The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
• The components are powered and engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0719 sets if the TCM is calibrated to receive the ABS status signal and the TCM senses one acceleration event with the ABS status ON.

Actions Taken When the DTC Sets

When DTC P0719 is active, the following conditions will occur:

• The TCM does not illuminate the CHECK TRANS light.
• DTC is stored in TCM history.
• TCM may disengage the torque converter clutch (TCC).
• The TCM uses the default assumption that ABS is OFF.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

• When an analog input wire is used, the ABS signal is received on wire 121. The ABS controller may directly pull wire 121 to ground or use a relay to complete a circuit between wire 121 and wire 103. If a data link is used, the TCM receives ABS status as part of J1939 message parameter PGN 61441, Electronic Brake Controller 1 (EBC1).
• DTC P0719 indicates the TCM has detected ABS status ON for a single acceleration event. The code can be caused by:
 — Faulty wiring
 — Faulty connections to the ABS relay
 — A faulty ABS relay
 — Another controller improperly broadcasting ABS status on the data link when ABS is not installed or operating
 — A fault in the ABS system itself
 — A faulty TCM.
DIAGNOSTIC TROUBLE CODES (DTC)

- Inspect the wiring for poor electrical connections at the TCM and service brake switch. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

- J1939 ABS status can be read on Allison DOC™ For PC–Service Tool. Monitor data link communications using Data Bus Viewer.

Test Description

The numbers below refer to step numbers on the diagnostic table.

1. This step tests for an active DTC.
2. This step determines if ABS status is being communicated by a data link message.

DTC P0719 Brake Switch ABS Input Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Clear the DTCs and drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that the ABS signal is present for more than a single acceleration event.
Did DTC P0719 return? | | | **Go to Step 3** | **Go to Diagnostic Aids** |
Is J1939 ABS status ON during acceleration events? | | **Go to Step 4** | **Go to Step 5** |
| 4 | **NOTE:** Allison Transmission is not responsible for data link messages that originate in other controllers. Repairs not associated with the transmission controller are not covered by Allison Transmission warranty.
Coordinate with the vehicle or engine OEM to correct the cause of the inconsistent J1939 ABS status message.
Is the repair complete? | | | **Go to Step 8** |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0719 Brake Switch ABS Input Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Remove the ABS input wire (121) from the 80-way connector.
2. Clear code and test drive vehicle.
Did the code return? | | Go to Step 7 | Go to Step 6 |
| 6 | Return vehicle to OEM for troubleshooting of wiring leading to ABS controller.
Was the problem found and corrected? | | Go to Step 8 |
| 7 | **NOTE:** In most cases, the TCM is not at fault.
Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | | Go to Step 8 |
| 8 | In order to verify your repair:
1. Clear the DTC.
2. Use to Allison DOC™ For PC–Service Tool monitor ABS status.
3. Drive the vehicle under conditions noted in failure records.
4. Confirm with the service tool in the test passed section that the diagnostic test was run.
Did the DTC return? | | Begin the diagnosis again.
Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P071A RELS Input Failed On

Circuit Description

The Transmission Control Module (TCM) can be calibrated to receive an input from the service brakes to activate and deactivate the Reduced Engine Load at Stop (RELS) feature. The input signal consists of switched power provided through a normally open service brake pressure switch. The switch closes when brakes are applied to supply switched power to the RELS input pin at the TCM. Supplemental controls such as a door switch or RELS enable switch may be wired in series with the brake switch.

When RELS is active, the TCM automatically commands transmission operation at a reduced load state similar to neutral. The vehicle must be at a stop with the service brakes applied and the throttle closed. RELS is de-activated when the service brake pressure switch is opened and switched power is removed from the RELS input pin at the TCM. The service brake input on SAE J1939 communications link CANNOT be used as an input for RELS.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P071A RELS Input Failed On

Conditions for Setting the DTC
Both of the following conditions must be met for the DTC to be set:

- DTC P071A sets if the TCM is calibrated to receive the RELS input signal.
- RELS input is active during one acceleration event.

Actions Taken When the DTC Sets
When DTC P071A is active, the following conditions will occur:

- The CHECK TRANS light is illuminated.
- DTC is stored in TCM history.
- TCM inhibits RELS operation.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- The RELS function is active when a service brake pressure switch is closed to supply switched power on wire 123 to pin 23 at the TCM.
- DTC P071A indicates the TCM has detected a RELS input signal during one acceleration event. The code can be caused by:
 - Faulty wiring
 - Faulty connections to service brake switch
 - A faulty service brake switch
 - Faulty TCM.
- Inspect the wiring for poor electrical connections at the TCM and service brake pressure switch. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for an active DTC.
3. This step tests for status of analog input wire 123.
4. This step tests for the presence of ignition voltage on wire 123.
5. This step tests for proper service brake switch function.
Diagnostic Trouble Codes (DTC)

DTC P071A RELS Input Failed On

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Clear the DTCs and drive the vehicle. Attempt to duplicate same operating conditions observed in failure records. NOTE: This DTC indicates that the RELS input is on during one acceleration event. Did DTC P071A return?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>3</td>
<td>1. Turn ON the ignition. 2. Using Allison DOC™ For PC–Service Tool, observe status of RELS input wire 123. Does wire 123 go ON when service brakes are applied and go OFF when service brakes are released?</td>
<td></td>
<td>Go to Diagnostic Aids</td>
<td>Go to Step 4</td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition. 2. Disconnect the TCM 80-way connector. 3. Connect TCM and OEM-side connectors to the J 47275 TCM Breakout. 4. Turn ON the ignition. 5. Release service brakes. NOTE: Ignition voltage should not be present at TCM pin 23 when brakes are released. 6. At J 47275-1 TCM Overlay, connect a DVOM and measure voltage between pins 23 and an isolated ground. Is ignition voltage present at pin 23 when service brakes are released?</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 8</td>
</tr>
<tr>
<td>5</td>
<td>1. Turn OFF the ignition. 2. Using a DVOM, check for continuity across the service brake switch when brakes are applied, and no continuity when brakes are released. Does the switch close when service brakes are applied and open when brakes are released?</td>
<td></td>
<td>Go to Step 6</td>
<td>Go to Step 7</td>
</tr>
<tr>
<td>6</td>
<td>NOTE: The vehicle OEM has responsibility for all external harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 9</td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P071A RELS Input Failed On (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>NOTE: The vehicle OEM has responsibility for vehicle input/output switch repairs. Switch repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the service brake switch. Is the repair complete?</td>
<td></td>
<td></td>
<td>Go to Step 9</td>
</tr>
<tr>
<td>8</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td></td>
<td>Go to Step 9</td>
</tr>
<tr>
<td>9</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Use Allison DOC™ For PC–Service Tool to monitor RELS status. 3. Drive the vehicle under conditions noted in failure records. 4. Confirm with the service tool in the test passed section that the diagnostic test was run. Did the DTC return?</td>
<td></td>
<td></td>
<td>System OK</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P071D General Purpose Input Fault

Circuit Description

Some emergency vehicles are equipped with an input function known as Auxiliary Function Range Inhibit (Special), which prevents inadvertent range selection when auxiliary equipment is operating. This function is enabled under the following conditions:

- Input wire 101 is connected to signal return wire 103, and
- Input wire 142 is connected to battery ground.

In a typical installation, a dash-mounted auxiliary equipment selector switch completes the circuit between wires 101 and 103. A second switch closes during operation of the auxiliary equipment to complete the circuit between wire 142 and battery ground. Both switches must be closed for the function to be enabled. When the two input wires (101 and 142) are ON, the TCM inhibits all neutral-to-range shifts. The inhibit remains in effect until either of the two input wires change state to OFF, or transmission output speed exceeds a preset value. The TCM sets DTC P071D if it detects the two input wires in two different states (ON or OFF) for longer than 120 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P071D General Purpose Input Fault

Conditions for Running the DTC
The test is enabled by calibration.

Conditions for Setting the DTC
DTC P071D sets if the TCM detects wire 101 and wire 142 in different states for more than 120 seconds.

Actions Taken When the DTC Sets
When DTC P071D is active, the following conditions will occur:

- The CHECK TRANS light is illuminated.
- The TCM may illuminate SERVICE TRANS light based on OEM wiring. Refer to Appendix P, Dual Input Auxiliary Function Range Inhibit.
- DTC is stored in TCM history.
- TCM allows Neutral-to-Range shifts.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P071D indicates the two input wires for Auxiliary Function Range Inhibit (Special) are in different ON/OFF states. The code can be caused by:
 - Faulty wiring
 - Faulty connections to the auxiliary equipment selector switch
 - A faulty auxiliary equipment selector switch
 - Faulty connection to the auxiliary equipment sense switch
 - A faulty auxiliary equipment sense switch
 - A faulty TCM.
- Inspect the wiring for poor electrical connections at the TCM and auxiliary equipment switches. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- The status of analog input wires 101 and 142 can be read on Allison DOC™ For PC–Service Tool.

Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step tests for an active DTC.
3. This step tests for status of analog input wires 101 and 142.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P071D General Purpose Input Fault

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Clear the DTCs.
5. Operate the auxiliary equipment in accordance with the vehicle manufacturer’s operating instructions. Attempt to duplicate same operating conditions observed in failure records.

NOTE: This DTC indicates that the two input wires for the auxiliary function range inhibit (special) I/O function are in different states for longer than 120 seconds.

Did DTC P071D return? | Go to Step 3 | Go to Diagnostic Aids |
| 3 | 1. Using Allison DOC™ For PC–Service Tool, determine the states of input wires 101 and 142.
2. Inspect the input wiring, connectors, and switches to determine why the input states are different.

Did you find and correct the problem? | Go to Step 5 | Go to Step 4 |
| 4 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.

Is Section 3–6 complete? | Go to Step 5 |
| 5 | In order to verify your repair:
1. Clear the DTC.
2. Use Allison DOC™ For PC–Service Tool to monitor Auxiliary Function Range Inhibit (special) input wires.
3. Operate the auxiliary equipment in accordance with the manufacturer’s operating instructions.

Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
Circuit Description

Speed sensors are variable reluctance devices that convert mechanical motion to an AC voltage. Each sensor consists of a wire coil wrapped around a pole piece that is adjacent to a permanent magnet. These elements are contained in a housing that is mounted adjacent to a rotating ferrous member. Two signal wires extend from one end of the housing and an exposed end of the pole piece is at the opposite end of the housing. The permanent magnet produces lines of flux around the pole piece. As a ferrous object (a tooth on the tone wheel) approaches and passes through the gap at the end of the pole piece, an AC voltage pulse is induced in the wire coil. The Transmission Control Module (TCM) calculates the frequency of these AC pulses and converts it to a speed value. The AC voltage generated varies from 150mV at low speed to 15V at high speed. The signal wires from the sensor are formed as twisted pairs to cancel magnetically induced fields. The cable is also shielded to protect from voltage-related fields. Using two-wire differential input at the TCM eliminates noise from other sources.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0721 Output Speed Sensor Circuit Performance

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Output speed is above 200 rpm.
- Shift is complete and range attained is not neutral.
- For fire truck vocation, pump not pumping.

Conditions for Setting the DTC

DTC P0721 is set when one of the following two conditions occur:

- Unrealistic large changes in output speed. Failure is set if an unrealistic change in transmission output speed is detected at or above 500 rpm for 0.15 seconds.
- Noisy output speed. Noise is determined with two counters. A low counter is incremented when output speed change is below 500 rpm for 80 samples. A high counter is incremented when output speed change is above 800 rpm. When both counters accumulate 5 events, a failure is set.

Actions Taken When the DTC Sets

When DTC P0721 is active, the following conditions will occur:

- If failure occurs while in a forward range and a shift has been completed, the transmission will remain in the current range.
- If failure occurs while in a forward range and a shift is in progress, the transmission will return to the previous range, except in post-shift state, then the transmission will continue to the commanded range.
- DTC P0721 is stored in TCM history.
- The CHECK TRANS light illuminates.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOCTM For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- Inspect the wiring for poor electrical connections at the TCM and service brake switch. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- You may have to drive the vehicle in order to experience a fault.
DIAGNOSTIC TROUBLE CODES (DTC)

- If the condition is intermittent, connect the Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

- Install a known good speed sensor and see if normal function is restored to rule out an internal short or open in the sensor removed.

- Check that the speed sensor wiring consists of twisted pairs at the rate of 12 to 16 twists per 300 mm. These twists must extend the entire length of the wiring harness to within at least 50 mm of the speed sensor connector.

- Install a known good TCM, if available. If the DTC does not return, reinstall the old TCM to verify the repair.

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper ignition voltage.
3. This step tests for proper output speed sensor resistance at the OEM-side of the harness.
4. This step tests for output speed sensor resistance.

DTC P0721 Output Speed Sensor Circuit Performance

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problems (refer to DTC P0882 and P0883)</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td>18–32V (24V TCM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Clear the DTCs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Using Allison DOC™ For PC–Service Tool, measure ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is voltage within specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Turn OFF the ignition.</td>
<td>Refer to Speed Sensor Resistance Table 6–12</td>
<td>Go to Step 4</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td></td>
<td>2. Disconnect the 80-way connector at the TCM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Using a DVOM, measure resistance between terminal 40 and terminal 60 at the OEM-side of the 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the speed sensor resistance within the specified value?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Disconnect the wiring harness from the output speed sensor.</td>
<td>Refer to Speed Sensor Resistance Table 6–12</td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td></td>
<td>2. Using a DVOM, check the resistance between the speed sensor terminals.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the speed sensor resistance within the specified value?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0721 Output Speed Sensor Circuit Performance (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Replace the output speed sensor (refer to appropriate service manual). Is replacement complete?</td>
<td>Go to Step 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under normal operating conditions. 3. Use Allison DOC™ For PC–Service Tool to monitor output speed sensor operation. Did the DTC return?</td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>

Table 6–12. Speed Sensor Temperature Resistance

<table>
<thead>
<tr>
<th>Current Resistance (Ohms) January, 2006</th>
<th>Former Resistance (Ohms) Before January, 2006</th>
<th>Temp °F</th>
<th>Temp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>200</td>
<td>–40</td>
<td>–40</td>
</tr>
<tr>
<td>340</td>
<td>300</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>450</td>
<td>400</td>
<td>230</td>
<td>110</td>
</tr>
</tbody>
</table>
Circuit Description

Speed sensors are variable reluctance devices that convert mechanical motion to an AC voltage. Each sensor consists of a wire coil wrapped around a pole piece that is adjacent to a permanent magnet. These elements are contained in a housing that is mounted adjacent to a rotating ferrous member. Two signal wires extend from one end of the housing and an exposed end of the pole piece is at the opposite end of the housing. The permanent magnet produces lines of flux around the pole piece. As a ferrous object (a tooth of the tone wheel) approaches and passes through the gap at the end of the pole piece, an AC voltage pulse is induced in the wire coil. The Transmission Control Module (TCM) calculates the frequency of these AC pulses and converts it to a speed value. The AC voltage generated varies from 150mV at low speed to 15V at high speed. The signal wires from the sensor are formed as twisted pairs to cancel magnetically induced fields. The cable is also shielded to protect from voltage-related fields. Using two-wire differential input at the TCM eliminates noise from other sources.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0722 Output Speed Sensor Circuit No Signal

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- For fire truck vocation, pump not pumping.
- For unrealistically large change in output speed test:
 - Output speed is at or above 600 rpm for more than 1 second.
- For low output speed test:
 - Shifting complete
 - Reverse-to-Neutral shift not in progress
 - Engine is running
 - No hydraulic default condition due to loss of ignition voltage
 - Transmission fluid temperature greater than –1.1ºC (30ºF)
 - Transmission turbine speed greater than or equal to 600 rpm

Conditions for Setting the DTC

DTC P0722 is set when one of the following three conditions occur:

- Unrealistic large change in output speed. A failure pending is set if the TCM detects a change in output speed of more than 600 rpm. A failure is set if range attained is Neutral.
- Unrealistic low value in output speed. A failure pending is set if output speed is detected below 61 rpm.
 - A failure is set when output speed is below 61 rpm in third, fourth, or fifth range for more than 1 second.
 - A failure is also set when output speed is below 61 rpm in second range for more than one 1 second when net engine torque is +/- 1 N·m or turbine speed is greater than 800 rpm.

Actions Taken When the DTC Sets

When DTC P0722 is active, the following conditions will occur:

- If failure occurs while in a forward range and a shift has been completed, the transmission will remain in the current range.
- If failure occurs while in a forward range and a shift is in progress, the transmission will return to the previous range, except in post-shift state, then the transmission will continue to the commanded range.
- DTC P0722 is stored in TCM history.
- The CHECK TRANS light illuminates.
- The TCM freezes shift adapts (DNA).
- The TCM inhibits TCC engagement.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOCTM For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.
Diagnostic Aids

- Inspect the wiring for poor electrical connections at the TCM and service brake switch. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

- You may have to drive the vehicle in order to experience a fault.

- If the condition is intermittent, connect the Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

- Install a known good speed sensor and see if normal function is restored to rule out an internal short or open in the sensor removed.

- Check that the speed sensor wiring consists of twisted pairs at the rate of 12 to 16 twists per 300 mm. These twists must extend the entire length of the wiring harness to within at least 50 mm of the speed sensor connector.

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests ignition voltage.

3. This step tests for proper output speed sensor resistance at the OEM-side of the harness.

4. This step tests for output speed sensor resistance.

DTC P0722 Output Speed Sensor Circuit No Signal

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Clear the DTCs. 5. Using Allison DOC™ For PC–Service Tool, measure ignition voltage. Is voltage within specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problems (refer to DTC P0882 and P0883)</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P0722 Output Speed Sensor Circuit No Signal (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1. Turn OFF the ignition.
2. Disconnect the 80-way connector at the TCM.
3. Using a DVOM, measure resistance between terminal 40 and terminal 60 at the OEM-side of the 80-way connector.
Is the speed sensor resistance within the specified value?</td>
<td>Refer to Speed Sensor Resistance Table 6–13</td>
<td>Go to Diagnostic Aids</td>
<td>Go to Step 4</td>
</tr>
<tr>
<td>4</td>
<td>1. Disconnect the wiring harness from the output speed sensor.
2. Using a DVOM, check the resistance between the speed sensor terminals.
Is the speed sensor resistance within the specified value?</td>
<td>Refer to Speed Sensor Resistance Table 6–13</td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete?</td>
<td></td>
<td>Go to Step 7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Replace the output speed sensor (refer to appropriate service manual).
Is replacement complete?</td>
<td></td>
<td>Go to Step 7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
3. Use Allison DOC™ For PC–Service Tool to monitor output speed sensor operation.
Did the DTC return?</td>
<td></td>
<td>Begin the diagnosis again.
Go to Step 1</td>
<td>System OK</td>
</tr>
</tbody>
</table>

Table 6–13. Speed Sensor Temperature Resistance

<table>
<thead>
<tr>
<th>Current Resistance (Ohms)</th>
<th>Former Resistance (Ohms)</th>
<th>Temp °F</th>
<th>Temp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>[January, 2006]</td>
<td>[Before January, 2006]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>200</td>
<td>–40</td>
<td>–40</td>
</tr>
<tr>
<td>340</td>
<td>300</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>450</td>
<td>400</td>
<td>230</td>
<td>110</td>
</tr>
</tbody>
</table>
Circuit Description

Speed sensors are variable reluctance devices that convert mechanical motion to an AC voltage. Each sensor consists of a wire coil wrapped around a pole piece that is adjacent to a permanent magnet. These elements are contained in a housing that is mounted adjacent to a rotating ferrous member. Two signal wires extend from one end of the housing and an exposed end of the pole piece is at the opposite end of the housing. The permanent magnet produces lines of flux around the pole piece. As a ferrous object (a rib on torque converter impeller) approaches and passes through the gap at the end of the pole piece, an AC voltage pulse is induced in the wire coil. The Transmission Control Module (TCM) calculates the frequency of these AC pulses and converts it to a speed value. The AC voltage generated varies from 150mV at low speed to 15V at high speed. The signal wires from the sensor are formed as twisted pairs to cancel magnetically induced fields. The cable is also shielded to protect from voltage-related fields. Using two-wire differential input at the TCM eliminates noise from other sources.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0726 Engine Speed Sensor Circuit Performance

Conditions for Running the DTC

- The test is enabled by calibration.
- Engine speed is above 600 rpm.
- Shift is complete and range attained is not neutral.

Conditions for Setting the DTC

DTC P0726 is set when one of the following conditions occur:

- Unrealistic large changes in engine speed. Failure is set if an unrealistic change in transmission engine speed is detected at or above 600 rpm for 0.15 seconds.
- Noisy engine speed. Noise is determined with two counters. A low counter is incremented when engine speed change is below 650 rpm for 80 samples. A high counter is incremented when engine speed change is above 1050 rpm. When both counters accumulate 5 events, a failure is set.

Actions Taken When the DTC Sets

When DTC P0726 is active, the following conditions will occur:

- DTC P0726 is stored in TCM history.
- The TCM does not illuminate the CHECK TRANS light.
- The TCM defaults engine speed to turbine speed. Turbine speed is used to determine the missing engine speed.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- Inspect the wiring for poor electrical connections at the TCM and engine speed sensor. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- You may have to drive the vehicle in order to experience a fault.
- If the condition is intermittent, connect the Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, damaged torque converter ribs).
- Install a known good speed sensor and see if normal function is restored to rule out an internal short or open in the sensor removed.
- Check that the speed sensor wiring consists of twisted pairs at the rate of 12 to 16 twists per 300 mm. These twists must extend the entire length of the wiring harness to within at least 50 mm of the speed sensor connector.
- Install a known good TCM, if available. If the DTC does not return, reinstall the old TCM to verify the repair.
TEST DESCRIPTION

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper ignition voltage.

3. This step tests for proper engine speed sensor resistance at the OEM-side of the harness.

4. This step tests for engine speed sensor resistance.

DTC P0726 Engine Speed Sensor Circuit Performance

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td></td>
<td>Go to Step 2</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Clear the DTCs.
5. Using Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is voltage within specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problems (refer to DTC P0882 and P0883) |
| 3 | 1. Turn OFF the ignition.
2. Disconnect the 80-way connector at the TCM.
3. Using a DVOM, measure resistance between terminal 39 and terminal 59 at the OEM-side of the 80-way connector.
Is the speed sensor resistance within the specified value? | Refer to Speed Sensor Resistance Table 6–14 | Go to Step 4 | Go to Step 5 |
| 4 | 1. Disconnect the wiring harness from the output speed sensor.
2. Using a DVOM, measure the resistance between the speed sensor terminals.
Is the speed sensor resistance within the specified value? | Refer to Speed Sensor Resistance Table 6–14 | Go to Step 5 | Go to Step 6 |
| 5 | NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | | | Go to Step 7 |
| 6 | Replace the engine speed sensor (refer to service manual).
Is replacement complete? | | | Go to Step 7 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0726 Engine Speed Sensor Circuit Performance (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 7 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
Did the DTC return? | | Begin the diagnosis again.
Go to Step 1 | System OK |

Table 6–14. Speed Sensor Temperature Resistance

<table>
<thead>
<tr>
<th>Current Resistance (Ohms)</th>
<th>Former Resistance (Ohms)</th>
<th>Temp °F</th>
<th>Temp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>200</td>
<td>–40</td>
<td>–40</td>
</tr>
<tr>
<td>340</td>
<td>300</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>450</td>
<td>400</td>
<td>230</td>
<td>110</td>
</tr>
</tbody>
</table>
Circuit Description

Speed sensors are variable reluctance devices that convert mechanical motion to an AC voltage. Each sensor consists of a wire coil wrapped around a pole piece that is adjacent to a permanent magnet. These elements are contained in a housing that is mounted adjacent to a rotating ferrous member. Two signal wires extend from one end of the housing and an exposed end of the pole piece is at the opposite end of the housing. The permanent magnet produces lines of flux around the pole piece. As a ferrous object (a rib on the torque converter impeller) approaches and passes through the gap at the end of the pole piece, an AC voltage pulse is induced in the wire coil. The Transmission Control Module (TCM) calculates the frequency of these AC pulses and converts it to a speed value. The AC voltage generated varies from 150mV at low speed to 15V at high speed. The signal wires from the sensor are formed as twisted pairs to cancel magnetically induced fields. The cable is also shielded to protect from voltage-related fields. Using two-wire differential input at the TCM eliminates noise from other sources.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0727 Engine Speed Sensor Circuit No Signal

Conditions for Running the DTC
• The test is enabled by calibration.
• For unrealistically low engine speed test:
 — Turbine speed is at or above 400 rpm.
 — The ignition key is in RUN.

Conditions for Setting the DTC
DTC P0727 is set when one of the following conditions occur:
• Unrealistic large change in engine speed. A failure pending is set if the TCM detects a change in engine speed of more than 1040 rpm.
• Unrealistic low value in engine speed. A failure is set if engine speed is detected below 61 rpm for 4 seconds.

Actions Taken When the DTC Sets
When DTC P0727 is active, the following conditions will occur:
• DTC P0727 is stored in TCM history.
• The TCM does not illuminate the CHECK TRANS light.
• The TCM defaults engine speed to turbine speed. Turbine speed is used to determine the missing engine speed.
• The TCM inhibits torque converter clutch (TCC) momentarily.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• Inspect the wiring for poor electrical connections at the TCM and engine speed sensor. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• You may have to drive the vehicle in order to experience a fault.
• If the condition is intermittent, connect the Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 — Intermittent wiring connection
 — Excessive vibration (driveline or engine torsionals)
 — Irregular sensor gap (loose sensor, damaged torque converter ribs).
• Install a known good speed sensor and see if normal function is restored to rule out an internal short or open in the sensor removed.
• Inspect that the speed sensor wiring consists of twisted pairs at the rate of 12 to 16 twists per 300 mm. These twists must extend the entire length of the wiring harness to within at least 50 mm of the speed sensor connector.
Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper ignition voltage.
3. This step tests for proper engine speed sensor resistance at the OEM-side of the harness.
4. This step tests for engine speed sensor resistance.

DTC P0727 Engine Speed Sensor Circuit No Signal

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Clear the DTCs.
5. Using Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is voltage within specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problems (refer to DTC P0882 and P0883) |
| 3 | 1. Turn OFF the ignition.
2. Disconnect the 80-way connector at the TCM.
3. Using a DVOM, measure resistance between terminal 39 and terminal 59 at the OEM-side of the 80-way connector.
Is the speed sensor resistance within the specified value? | Refer to Speed Sensor Resistance Table 6–15 | Go to Diagnostic Aids | Go to Step 4 |
| 4 | 1. Disconnect the wiring harness from the engine speed sensor.
2. Using a DVOM, measure the resistance between the speed sensor terminals.
Is the speed sensor resistance within the specified value? | Refer to Speed Sensor Resistance Table 6–15 | Go to Step 5 | Go to Step 6 |
| 5 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed at Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | | | Go to Step 7 |
| 6 | Replace the engine speed sensor (refer to service manual).
Is replacement complete? | | | Go to Step 7 |
In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
Did the DTC return?

Table 6–15. Speed Sensor Temperature Resistance

<table>
<thead>
<tr>
<th>Current Resistance (Ohms)</th>
<th>Former Resistance (Ohms)</th>
<th>Temp °F</th>
<th>Temp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>200</td>
<td>–40</td>
<td>–40</td>
</tr>
<tr>
<td>340</td>
<td>300</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>450</td>
<td>400</td>
<td>230</td>
<td>110</td>
</tr>
</tbody>
</table>
Circuit Description
The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to determine the current commanded steady state gear ratio. The TCM then compares the known gear ratio to the calculated gear ratio for the current range.

Conditions for Running the DTC
- Hydraulic system is pressurized.
- No shift in progress.
- Hydraulic default condition not present.
- Output speed is above 200 rpm.
- Engine initialization or shutdown is not in progress.

Conditions for Setting the DTC
DTC P0729 sets during steady state condition when the calculated sixth gear ratio differs from the known sixth gear ratio for more than 2 seconds.

Actions Taken When the DTC Sets
When DTC P0729 is active, the following conditions will occur:
- The TCM attempts to shift to fifth range. If unsuccessful, the TCM commands third range.
- While diagnostic response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- You may have to clear the DTC and drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing the failure mode where DTC was set.
- Incorrect ratio codes typically indicate mechanical problems with specific clutches for range indicated, i.e. C2 and C4 for sixth range.
- An incorrect ratio DTC may indicate a mechanically failed clutch control solenoid. Review the DTC information for the specific solenoid.
- Output speed or turbine speed tone wheel damage may cause erratic speed sensor input allowing this code to set.

Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for proper ignition voltage.
4. This step tests speed sensor readings.
5. This step tests for clutch slippage in sixth range.
6. This step tests for clutch pressure to range clutches.
7. This step tests for evidence of clutch failure.

DTC P0729 Incorrect 6th Gear Ratio

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
</tbody>
</table>
| 3 | 1. Start the engine.
2. Record the DTC failure record data.
3. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 4 | Go to General Troubleshooting Section 8 |
| 4 | 1. Start the engine and drive the vehicle under normal operating conditions.
2. Using the Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings.
Is speed sensor data erratic or are dropouts in signal indicated? | Watch for erratic speed sensor signals | Go to the appropriate speed sensor DTC | Go to Step 5 |
| 5 | **WARNING:** To help avoid injury or property damage caused by sudden and unexpected vehicle movement, do not start a stationary stall test until you:
• Put the transmission in N (Neutral).
• Apply the parking brake and service brake.
• Chock the wheels and take any other steps necessary to prevent the vehicle from moving.
• Warn personnel to keep clear of the vehicle and its path. | | Go to Diagnostic Aids | Go to Step 6 |

1. Start the engine.
2. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
3. With brakes applied, select D (Drive).
4. With the engine at idle, select and **attain the range indicated** by the DTC. Turbine speed should go to zero.
5. Slowly increase engine speed to 1200 to 1500 rpm. Watch for turbine speed (turbine speed should remain at zero).
Did turbine speed remain at zero?
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0729 Incorrect 6th Gear Ratio (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
 2. Install 2000 kPa (300 psi) pressure gauges in main pressure tap and C2 and C4 pressure taps.
 3. Start the engine.
 4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
 5. With brakes applied, select and attain range indicated by the DTC.
 6. Read and record Main, C2, and C4 clutch pressures.
 Are the pressure readings within specified values in Appendix B? | See Main and Clutch Pressure specifications in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.
 Are there signs of a clutch failure? | | Go to Step 10 | Go to Step 9 |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
 2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
 3. Inspect the suction filter. Be sure screen is not plugged.
 4. Inspect for damaged gaskets and face seals.
 Was a valve body problem found and repaired? | | Go to Step 11 | Go to Step 9 |
| 9 | Using pressure readings obtained in Step 6, replace the affected solenoid.
 • Incorrect C2 pressure—PCS2
 • Incorrect C4 pressure—PCS4
 Is the replacement complete? | | Go to Step 11 | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
 If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
 Is the replacement complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
 1. Clear the DTC.
 2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
 3. Drive the vehicle under normal operating conditions.
 Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0731 Incorrect 1st Gear Ratio

Refer to First Range Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to determine the current commanded steady state gear ratio. The TCM then compares the known gear ratio to the calculated gear ratio for the current range.

Conditions for Running the DTC
- Hydraulic system is pressurized.
- No shift in progress.
- Hydraulic default condition not present.
- Output speed is above 200 rpm.
- Engine initialization or shutdown is not in progress.

Conditions for Setting the DTC
DTC P0731 sets when the calculated first range ratio (steady state) differs from the known first range ratio.

Actions Taken When the DTC Sets
When DTC P0731 is active, the following conditions will occur:
- The TCM attempts to shift to second range. If unsuccessful, the TCM will shift to fifth range.
- While diagnostic response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- You may have to clear the DTC and drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing the failure mode where DTC was set.
- Incorrect ratio codes typically indicate mechanical problems with specific clutches for range indicated, i.e. C1 and C5 for first range.
- An incorrect ratio DTC may indicate a mechanically failed clutch control solenoid. Review the DTC information for the specific solenoid.
- Incorrect TCM calibration will cause this DTC to set. Verify that the Calibration Identification Number (CIN) is compatible with the model of transmission installed in the vehicle.
- Output speed or turbine speed tone wheel damage may cause erratic speed sensor input allowing this code to set.
Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step test for proper transmission fluid level.
3. This step tests for proper ignition voltage.
4. This step tests for proper match between calibration gear ratio and actual gear ratio.
5. This step tests speed sensor readings.
6. This step tests for clutch slippage in first range.
7. This step tests for clutch pressure to range clutches.
8. This step tests for evidence of clutch failure.

DTC P0731 Incorrect 1st Gear Ratio

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
<td></td>
</tr>
</tbody>
</table>
| 3 | 1. Start the engine.
2. Record the DTC failure record data.
3. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 4 | Go to General Troubleshooting Section 8 |
| 4 | 1. Start the engine, use the shift selector to hold in first range, and drive the vehicle under normal operating conditions.
2. Using the Allison DOC™ For PC–Service Tool, read the Diagnostic Transmission Gear Ratio.
3. Compare the gear ratio shown on Allison DOC™ For PC–Service Tool with the actual gear ratio of the transmission.
Is the TCM CIN correct for transmission model? | 3000 Product Family
Close ratio=3.49:1
Wide ratio= 4.59:1
4000 Product Family
Close ratio=3.51:1
Wide ratio= 4.70:1 | Go to Step 5 | Go to Diagnostic Aids |
| 5 | 1. Start the engine and drive the vehicle under normal operating conditions.
2. Using the Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings.
Is speed sensor data erratic or are dropouts in signal indicated? | Watch for erratic speed sensor signals | Go to the appropriate speed sensor DTC | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0731 Incorrect 1st Gear Ratio (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | WARNING: To help avoid injury or property damage caused by sudden and unexpected vehicle movement, do not start a stationary stall test until you:
- Put the transmission in N (Neutral).
- Apply the parking brake and service brake.
- Chock the wheels and take any other steps necessary to prevent the vehicle from moving.
- Warn personnel to keep clear of the vehicle and its path.
4. With the engine at idle, select and attain the range indicated by the DTC. Turbine speed should go to zero.
5. Slowly increase engine speed to 1200 to 1500 rpm. Watch for turbine speed (turbine speed should remain at zero).
 Did turbine speed remain at zero? | | Go to Diagnostic Aids | Go to Step 7 |
| 7 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main pressure tap and C1 and C5 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select range indicated by the DTC.
6. Read and record Main, C1, and C5 clutch pressures.
 Are the pressure readings within specified values in Appendix B? | See Main and Clutch Pressure specifications in Appendix B | Go to Step 8 | Go to Step 9 |
| 8 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.
 Are there signs of a clutch failure? | | Go to Step 11 | Go to Diagnostic Aids |
| 9 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals.
 Was a valve body problem found and repaired? | | Go to Step 12 | Go to Step 10 |
3000 AND 4000 PRODUCT FAMILIES TROUBLESHOOTING MANUAL—ALLISON 4th GENERATION CONTROLS

DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0731 Incorrect 1st Gear Ratio (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 10 | Using pressure readings obtained in Step 6, replace the affected solenoid.
• Incorrect C1 pressure—PCS1
• Incorrect C5 pressure—PCS3
Is the replacement complete? | | Go to Step 12 | |
| 11 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | | Go to Step 12 | |
| 12 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0732 Incorrect 2nd Gear Ratio

Refer to Second Range Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to determine the current commanded steady state gear ratio. The TCM then compares the known gear ratio to the calculated gear ratio for the current range.

Conditions for Running the DTC
- Hydraulic system is pressurized.
- No shift in progress.
- Hydraulic default condition not present.
- Output speed is above 200 rpm.
- Engine initialization or shutdown is not in progress.

Conditions for Setting the DTC
DTC P0732 sets when the calculated second range ratio (steady state) differs from the known second range ratio.

Actions Taken When the DTC Sets
When DTC P0732 is active, the following conditions will occur:
- The TCM will attempt to shift to third range. If unsuccessful, the TCM commands fifth range.
- While diagnostic response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- You may have to clear the DTC and drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing failures mode where DTC was set.
- Incorrect ratio codes typically indicate mechanical problems with specific clutches for range indicated, i.e. C1 and C4 for second range.
- An incorrect ratio DTC may indicate a mechanically failed clutch control solenoid. Review the DTC information for the specific solenoid.
- Incorrect TCM calibration will cause this DTC to set. Verify that the Calibration Identification Number (CIN) is compatible with the model of transmission installed in the vehicle.
- Output speed or turbine speed tone wheel damage may cause erratic speed sensor input allowing this code to set.
Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for proper ignition voltage.
4. This step tests for proper match between calibration gear ratio and actual gear ratio.
5. This step tests speed sensor readings.
6. This step tests for clutch slippage in second range.
7. This step tests for clutch pressure to range clutches.
8. This step tests for evidence of clutch failure.

DTC P0732 Incorrect 2nd Gear Ratio

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Start the engine. 2. Record the DTC failure record data. 3. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 4</td>
<td>Go to General Troubleshooting Section 8</td>
</tr>
<tr>
<td>4</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions in the range that sets the code. 2. Use the shift selector to hold transmission in second range. 3. Using the Allison DOC™ For PC–Service Tool, read the Diagnostic Transmission Gear Ratio. 4. Compare the gear ratio shown on Allison DOC™ For PC–Service Tool with the actual gear ratio of the transmission. Is the TCM CIN correct for transmission model?</td>
<td>3000 Product Family Close ratio= 1.86:1 Wide ratio= 2.25:1 4000 Product Family Close ratio= 1.91:1 Wide ratio= 2.21:1</td>
<td>Go to Step 5</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>5</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions. 2. Using the Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings. Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to the appropriate speed sensor DTC</td>
<td>Go to Step 6</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0732 Incorrect 2nd Gear Ratio (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | WARNING: To help avoid injury or property damage caused by sudden and unexpected vehicle movement, do not start a stationary stall test until you:
• Put the transmission in N (Neutral).
• Apply the parking brake and service brake.
• Chock the wheels and take any other steps necessary to prevent the vehicle from moving.
• Warn personnel to keep clear of the vehicle and its path. | Go to Diagnostic Aids | Go to Step 7 |
| 7 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main pressure tap and C1 and C4 pressure taps.
3. Start the engine.
4. Using Allison DOCTM For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select D (Drive).
6. With the engine at idle, select and attain the range indicated by the DTC. Turbine speed should go to zero.
5. Slowly increase engine speed to 1200 to 1500 rpm. Watch for turbine speed (turbine speed should remain at zero). Did turbine speed remain at zero? | See Main and Clutch Pressure specifications in Appendix B | Go to Step 8 | Go to Step 9 |
| 8 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection. Are there signs of a clutch failure? | Go to Step 11 | Go to Diagnostic Aids |
| 9 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals. Was a valve body problem found and repaired? | Go to Step 12 | Go to Step 10 |
DTC P0732 Incorrect 2nd Gear Ratio (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 10 | Using pressure readings obtained in Step 6, replace the affected solenoid.
• Incorrect C1 pressure—PCS1
• Incorrect C4 pressure—PCS4
Is the replacement complete? | | Go to Step 12 |
| 11 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | | Go to Step 12 |
| 12 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOCTM For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | | System OK |

Begin the diagnosis again.
Go to Step 1
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0733 Incorrect 3rd Gear Ratio

Refer to Third Range Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to determine the current commanded steady state gear ratio. The TCM then compares the known gear ratio to the calculated gear ratio for the current range.

Conditions for Running the DTC
• Hydraulic system is pressurized.
• No shift in progress.
• Hydraulic default condition not present.
• Output speed is above 200 rpm.
• Engine initialization or shutdown is not in progress.

Conditions for Setting the DTC
DTC P0733 sets when the calculated third range ratio (steady state) differs from the known third range ratio.

Actions Taken When the DTC Sets
When DTC P0733 is active, the following conditions will occur:
• The TCM attempts to shift to fourth range. If unsuccessful, the TCM commands sixth range.
• While diagnostic response is active, the TCM ignores shift selector inputs.
• The \texttt{CHECK TRANS} light illuminates.
• DTC is stored in TCM history.
• The TCM inhibits TCC engagement.
• The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/\texttt{CHECK TRANS} Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• You may have to clear the DTC and drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing the failure mode where the DTC was set.
• Incorrect ratio codes typically indicate mechanical problems with specific clutches for range indicated, i.e. C1 and C3 for third range.
• An incorrect ratio DTC may indicate a mechanically failed clutch control solenoid. Review the DTC information for the specific solenoid.
• Incorrect TCM calibration will cause this DTC to set. Verify that the Calibration Identification Number (CIN) is compatible with the model of transmission installed in vehicle.
• Output speed or turbine speed tone wheel damage may cause erratic speed sensor input allowing this code to set.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for proper ignition voltage.
4. This step tests for proper match between calibration gear ratio and actual gear ratio.
5. This step tests speed sensor readings.
6. This step tests for clutch slippage in third range.
7. This step tests for clutch pressure to range clutches.
8. This step tests for evidence of clutch failure.

DTC P0733 Incorrect 3rd Gear Ratio

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td></td>
<td>Go to Step 2</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips).</td>
<td></td>
<td>Go to Step 3</td>
<td></td>
</tr>
</tbody>
</table>
| 3 | 1. Start the engine.
2. Record the DTC failure record data.
3. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is the transmission fluid level correct? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 4 | Go to General Troubleshooting Section 8 |
| 4 | 1. Start the engine and drive the vehicle under normal operating conditions.
2. Use the shift selector to hold transmission in third range.
3. Using the Allison DOC™ For PC–Service Tool, read the Diagnostic Transmission Gear Ratio.
4. Compare the gear ratio shown on Allison DOC™ For PC–Service Tool with the actual gear ratio of the transmission.
Is the TCM CIN correct for transmission model? | 3000 Product Family
Close ratio= 1.41:1
Wide ratio= 1.54:1
4000 Product Family
Close ratio= 1.43:1
Wide ratio= 1.53:1 | Go to Step 5 | Go to Diagnostic Aids |
| 5 | 1. Start the engine and drive the vehicle under normal operating conditions.
2. Using the Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings.
Is speed sensor data erratic or are dropouts in signal indicated? | Watch for erratic speed sensor signals | Go to the appropriate speed sensor DTC | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0733 Incorrect 3rd Gear Ratio (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| **6** | WARNING: To help avoid injury or property damage caused by sudden and unexpected vehicle movement, do not start a stationary stall test until you:
- Put the transmission in N (Neutral).
- Apply the parking brake and service brake.
- Chock the wheels and take any other steps necessary to prevent the vehicle from moving.
- Warn personnel to keep clear of the vehicle and its path. | | Go to Diagnostic Aids | Go to Step 7 |
| 1. | Start the engine. | | | |
| 2. | Using Allison DOC™ For PC–Service Tool, select the clutch test mode. | | | |
| 3. | With brakes applied, select D (Drive). | | | |
| 4. | With the engine at idle, select and **attain the range indicated** by the DTC. Turbine speed should go to zero. | | | |
| 5. | Slowly increase engine speed to 1200 to 1500 rpm. Watch for turbine speed (turbine speed should remain at zero). Did turbine speed remain at zero? | | | |
| 7 | 1. | Turn OFF the ignition. | See Main and Clutch Pressure specifications in Appendix B | Go to Step 8 |
| 2. | Install 2000 kPa (300 psi) pressure gauges in main pressure tap and C1 and C3 pressure taps. | | Go to Step 9 |
| 3. | Start the engine. | | | |
| 4. | Using Allison DOC™ For PC–Service Tool, select the clutch test mode. | | | |
| 5. | With brakes applied, select and attain range indicated by the DTC. | | | |
| 6. | Read and record Main, C1, and C3 clutch pressures. Are the pressure readings within specified values in Appendix B? | | | |
| 8 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection. Are there signs of a clutch failure? | | Go to Step 11 | Go to Diagnostic Aids |
| 9 | 1. | Consult the service manual and remove the transmission hydraulic control module. | Go to Step 12 | Go to Step 10 |
| 2. | Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves. | | | |
| 3. | Inspect the suction filter. Be sure screen is not plugged. | | | |
| 4. | Inspect for damaged gaskets and face seals. Was a valve body problem found and repaired? | | | |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0733 Incorrect 3rd Gear Ratio (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 10 | Using pressure readings obtained in Step 6, replace the affected solenoid.
• Incorrect C1 pressure—PCS1
• Incorrect C3 pressure—PCS3
Is the replacement complete? | | Go to Step 12 |
| 11 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | | Go to Step 12 |
| 12 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0734 Incorrect 4th Gear Ratio

Refer to Fourth Range Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to determine the current commanded steady state gear ratio. The TCM then compares the known gear ratio to the calculated gear ratio for the current range.

Conditions for Running the DTC
- Hydraulic system is pressurized.
- No shift in progress.
- Hydraulic default condition not present.
- Output speed is above 200 rpm.
- Engine initialization or shutdown is not in progress.

Conditions for Setting the DTC
DTC P0734 sets when the calculated fourth range ratio (steady state) differs from the known fourth range ratio.

Actions Taken When the DTC Sets
When DTC P0734 is active, the following conditions will occur:
- The TCM attempts to shift to fifth range. If unsuccessful, the TCM commands third range.
- While diagnostic response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- You may have to clear the DTC and drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing failures mode where DTC was set.
- Incorrect ratio codes typically indicate mechanical problems with specific clutches for range indicated, i.e. C1 and C2 for fourth range.
- An incorrect ratio DTC may indicate a mechanically failed clutch control solenoid. Review the DTC information for the specific solenoid.
- Output speed or turbine speed tone wheel damage may cause erratic speed sensor input allowing this code to set.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for proper ignition voltage.
4. This step tests speed sensor readings.
5. This step tests for clutch slippage in fourth range.
6. This step tests for clutch pressure to range clutches.
7. This step tests for evidence of clutch failure.

DTC P0734 Incorrect 4th Gear Ratio

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td></td>
<td>Go to Section 3–5, Beginning The Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td>Go to Step 3</td>
<td></td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Start the engine. 2. Record the DTC failure record data. 3. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 4</td>
<td>Go to General Troubleshooting Section 8</td>
</tr>
<tr>
<td>4</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions. 2. Using the Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings. Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to the appropriate speed sensor DTC</td>
<td>Go to Step 5</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P0734 Incorrect 4th Gear Ratio (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | WARNING: To help avoid injury or property damage caused by sudden and unexpected vehicle movement, do not start a stationary stall test until you:
• Put the transmission in N (Neutral).
• Apply the parking brake and service brake.
• Chock the wheels and take any other steps necessary to prevent the vehicle from moving.
• Warn personnel to keep clear of the vehicle and its path. | Go to Diagnostic Aids | Go to Step 6 |
| 1. Start the engine.
2. Using Allison DOC™ For PC—Service Tool, select the clutch test mode.
3. With brakes applied, select D (Drive).
4. With the engine at idle, select and attain the range indicated by the DTC. Turbine speed should go to zero.
5. Slowly increase engine speed to 1200 to 1500 rpm. Watch for turbine speed (turbine speed should remain at zero). | | |

Did turbine speed remain at zero? |

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main pressure tap and C1 and C2 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC—Service Tool, select the clutch test mode.
5. With brakes applied, select and attain range indicated by the DTC.
6. Read and record Main, C1, and C2 clutch pressures. | Go to Step 7 | Go to Step 8 |

Are the pressure readings within specified values in Appendix B? |

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.</td>
<td>Go to Step 10</td>
<td>Go to Diagnostic Aids</td>
<td></td>
</tr>
</tbody>
</table>

Are there signs of a clutch failure? |

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals. | Go to Step 10 | Go to Step 9 |

Was a valve body problem found and repaired? |
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 9 | Using pressure readings obtained in Step 6, replace the affected solenoid.
• Incorrect C1 pressure—PCS1
• Incorrect C2 pressure—PCS2 | Is the replacement complete? | Go to Step 11 | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | Go to Step 11 | | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK | |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0735 Incorrect 5th Gear Ratio

Refer to Fifth Range Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to determine the current commanded steady state gear ratio. The TCM then compares the known gear ratio to the calculated gear ratio for the current range.

Conditions for Running the DTC
- Hydraulic system is pressurized.
- No shift in progress.
- Hydraulic default condition not present.
- Output speed is above 200 rpm.
- Engine initialization or shutdown is not in progress.

Conditions for Setting the DTC
DTC P0735 sets when the calculated fifth range ratio (steady state) differs from the known fifth range ratio.

Actions Taken When the DTC Sets
When DTC P0735 is active, the following conditions will occur:
- The TCM attempts to shift to sixth range. If unsuccessful, the TCM will attempt to shift to third range. If unsuccessful, the TCM commands second range.
- While diagnostic response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOCTM For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- You may have to clear the DTC and drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing the failure mode where the DTC was set.
- Incorrect ratio codes typically indicate mechanical problems with specific clutches for range indicated, i.e. C2 and C3 for fifth range.
- An incorrect ratio DTC may indicate a mechanically failed clutch control solenoid. Review the DTC information for the specific solenoid.
- Output speed or turbine speed tone wheel damage may cause erratic speed sensor input allowing this code to set.

Test Description

The numbers below refer to step numbers on the diagnostic table.

- 2. This step tests for proper transmission fluid level.
- 3. This step tests for proper ignition voltage.
- 4. This step tests speed sensor readings.
- 5. This step tests for clutch slippage in fifth range.
- 6. This step tests for clutch pressure to range clutches.
- 7. This step tests for evidence of clutch failure.

DTC P0735 Incorrect 5th Gear Ratio

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Start the engine. 2. Record the DTC failure record data. 3. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 4</td>
<td>Go to General Troubleshooting Section 8</td>
</tr>
<tr>
<td>4</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions. 2. Using the Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings. Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to the appropriate speed sensor DTC</td>
<td>Go to Step 5</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0735 Incorrect 5th Gear Ratio (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | WARNING: To help avoid injury or property damage caused by sudden and unexpected vehicle movement, do not start a stationary stall test until you:
- Put the transmission in N (Neutral).
- Apply the parking brake and service brake.
- Chock the wheels and take any other steps necessary to prevent the vehicle from moving.
- Warn personnel to keep clear of the vehicle and its path. | Go to Diagnostic Aids | Go to Step 6 |
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main pressure tap and C2 and C3 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select D (Drive).
6. With the engine at idle, select and attain the range indicated by the DTC. Turbine speed should go to zero.
5. Slowly increase engine speed to 1200 to 1500 rpm. Watch for turbine speed (turbine speed should remain at zero).
Did turbine speed remain at zero? | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.
Are there signs of a clutch failure? | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals.
Was a valve body problem found and repaired? | Go to Step 11 | Go to Step 9 |
DTC P0735 Incorrect 5th Gear Ratio (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 9 | Using pressure readings obtained in Step 6, replace the affected solenoid.
- Incorrect C2 pressure—PCS2
- Incorrect C3 pressure—PCS3 | | Go to Step 11 | |
| | Is the replacement complete? | | | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual). | | Go to Step 11 | |
| | Is the replacement complete? | | | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions. | | System OK | |
| | Did the DTC return? | | | |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0736 Incorrect Reverse Gear Ratio

Refer to Reverse Range Hydraulic Schematic

Circuit Description

The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to determine the current commanded steady state gear ratio. The TCM then compares the known gear ratio to the calculated gear ratio for the current range.

Conditions for Running the DTC

- Hydraulic system is pressurized.
- No shift in progress.
- Hydraulic default condition not present.
- Output speed is above 200 rpm.
- Engine initialization or shutdown is not in progress.

Conditions for Setting the DTC

DTC P0736 sets when the calculated reverse range ratio (steady state) differs from the known reverse range ratio.

Actions Taken When the DTC Sets

When DTC P0736 is active, the following conditions will occur:

- The TCM will lock in N (Neutral).
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOCTM For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- You may have to clear the DTC and drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing the failure mode where the DTC was set.
- Incorrect ratio codes typically indicate mechanical problems with specific clutches for range indicated, i.e. C3 and C5 for reverse range.
- An incorrect ratio DTC may indicate a mechanically failed clutch control solenoid. Review the DTC information for the specific solenoid.
Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for proper ignition voltage.
4. This step tests for proper match between calibration gear ratio and actual gear ratio.
5. This step tests speed sensor readings.
6. This step tests for clutch slippage in Reverse.
7. This step tests for clutch pressure to range clutches.
8. This step tests for evidence of clutch failure.

DTC P0736 Incorrect Reverse Ratio

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Start the engine. 2. Record the DTC failure record data. 3. Using the Allison DOCTM For PC–Service Tool, measure ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 4</td>
<td>Go to General Troubleshooting Section 8</td>
</tr>
<tr>
<td>4</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions. 2. Using the Allison DOCTM For PC–Service Tool, monitor turbine, engine, and output speed sensor readings. Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to the appropriate speed sensor DTC</td>
<td>Go to Step 5</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0736 Incorrect Reverse Ratio (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>WARNING: To help avoid injury or property damage caused by sudden and unexpected vehicle movement, do not start a stationary stall test until you:
• Put the transmission in N (Neutral).
• Apply the parking brake and service brake.
• Chock the wheels and take any other steps necessary to prevent the vehicle from moving.
• Warn personnel to keep clear of the vehicle and its path.
CAUTION: DO NOT conduct a stall test in Reverse. The torque produced in Reverse can damage the vehicle.</td>
<td>Go to Diagnostic Aids</td>
<td></td>
<td>Go to Step 6</td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main pressure tap and C3 and C5 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select R (Reverse).
6. With the engine at idle speed, select and attain the range indicated by the DTC. Turbine speed should go to zero. Did turbine speed remain at zero?</td>
<td>See Main and Clutch Pressure specifications in Appendix B</td>
<td>Go to Step 7</td>
<td>Go to Step 8</td>
</tr>
<tr>
<td>7</td>
<td>1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals. Was a valve body problem found and repaired?</td>
<td>Go to Step 10</td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>
DTC P0736 Incorrect Reverse Ratio (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 9 | Using pressure readings obtained in Step 6, replace the affected solenoid.
 • Incorrect C3 pressure—PCS2
 • Incorrect C5 pressure—PCS3
 Is the replacement complete? | | **Go to Step 11** | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
 If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
 Is the replacement complete? | | **Go to Step 11** | |
| 11 | In order to verify your repair:
 1. Clear the DTC.
 2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
 3. Drive the vehicle under normal operating conditions.
 Did the DTC return? | | **System OK** | **Begin the diagnosis again. Go to Step 1** |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0741 Torque Converter Clutch System Stuck Off

Refer to Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses data from the engine speed sensor and the turbine speed sensor to calculate torque converter slip value. The TCM then compares this calculated slip value to a preset value in the TCM calibration.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm.
- Selected range is a forward range.
- Throttle position is above 75 percent.
- Transmission fluid temperature is between 25ºC (77ºF) and 130ºC (266ºF).
- 6 seconds or more have elapsed since torque converter clutch (TCC) was applied in a range.

Conditions for Setting the DTC
DTC P0741 sets when the TCM detects a TCC slip value greater than 150 rpm for more than 25.5 seconds, indicating TCC did not apply.

Actions Taken When the DTC Sets
When DTC P0741 is active, the following conditions will occur:
- DTC is stored in TCM history.
- The CHECK TRANS light illuminates.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
Residue or contamination may cause solenoid regulator (spool) valves to stick intermittently.

Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step tests converter slip speed.
3. This step tests if TCC is being commanded ON.
4. This step tests for hydraulic pressure in lockup clutch circuit.
DTC P0741 Torque Converter Clutch System Stuck Off

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Action Description</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.
2. Turn ON the ignition. leave the engine OFF.
3. Record the failure records.
4. Clear the DTC.
5. Drive the vehicle.
6. Using Allison DOC™ For PC–Service Tool, monitor TCC slip speed when a range is attained where the TCC should be applied.

NOTE: This DTC sets when converter slip speed is detected above 150 rpm for 25.6 seconds or more. This indicates the TCC has not applied.
Is the slip speed value at or above the specified value when the TCC should be applied.</td>
<td>>150 rpm</td>
<td>Go to Step 3</td>
<td>Go to Diagnostic Aids</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monitor TCC solenoid state when converter slip speed is greater than 150 rpm.
Is the TCC solenoid ON?</td>
<td></td>
<td></td>
<td>Go to Step 4</td>
<td>Go to General Troubleshooting Section 8</td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauge in the lockup pressure tap.
3. Drive the vehicle under normal operating conditions.
4. Using Allison DOC™ For PC–Service Tool, monitor TCC slip speed.
5. Read and record lockup pressure when TCC slip speed is greater than 150 rpm.
Is lockup pressure reading within specified values in Appendix B?</td>
<td>See Lockup Clutch Pressure specifications in Appendix B</td>
<td>Go to Step 7</td>
<td>Go to Step 5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1. Consult the appropriate service manual and remove the transmission hydraulic control module.
2. Inspect the solenoid control valve body for a stuck or sticking TCC solenoid regulator valve.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets.
Was a valve body problem found and repaired?</td>
<td></td>
<td></td>
<td>Go to Step 8</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td>6</td>
<td>Replace the TCC solenoid.
Is replacement complete?</td>
<td></td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0741 Torque Converter Clutch System Stuck Off (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1. Remove the transmission (refer to the appropriate service manual).
2. Disassemble and inspect the torque converter.
3. Inspect for worn lockup clutch damper friction material, damaged seals, etc.
Is the repair complete?</td>
<td>Go to Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor converter slip speed.
3. Drive the vehicle under conditions noted in failure records.
Did the DTC return?</td>
<td>Begin the diagnosis again.
Go to Step 1</td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0776 Pressure Control Solenoid 2 Stuck Off

Refer to Hydraulic Schematic

Circuit Description

The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to detect if a clutch is slipping. Pressure Control Solenoid 2 (PCS2) supplies hydraulic pressure to the C3 clutch in reverse and to the C2 clutch in fourth through sixth range. The TCM sets a DTC P0776 when it detects a slip condition while PCS2 is supplying hydraulic pressure to the oncoming clutch.

Conditions for Running the DTC

• Hydraulic system is pressurized.
• Output speed greater than or equal to 125 rpm.
• Turbine speed greater than or equal to 60 rpm.
• Cold Mode operation not required.

Conditions for Setting the DTC

DTC P0776 sets when the TCM detects an incorrect oncoming ratio (range-to-range) for an accumulated number of occurrences.

Actions Taken When the DTC Sets

• When DTC P0776 occurs, the TCM will command the previous range.
• While diagnostic response is active, the TCM ignores shift selector inputs.
• The CHECK TRANS light illuminates.
• DTC is stored in TCM history.
• The TCM inhibits TCC engagement.
• The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

• This DTC indicates the oncoming clutch being controlled by PCS2 is not applied or applied too slowly. Common causes include:
 — Erratic turbine or output speed signals.
 — A leak or obstruction in a specific clutch apply circuit.
 — A defective PCS2 solenoid.
 — A stuck PCS2 regulator valve.
 — A stuck C2 logic latch valve.
• PCS2 supplies hydraulic pressure to the C3 clutch in reverse and to the C2 clutch in fourth range through sixth range. Review the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
DIAGNOSTIC TROUBLE CODES (DTC)

- If the condition is intermittent, connect Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for active diagnostic codes.
4. This step tests ignition voltage.
5. This step tests speed sensor readings.
6. This step tests for C2 and C3 clutch pressure from PCS2.
7. This step tests for evidence of clutch failure.
8. This step tests for stuck or sticking valves and damaged valve body gaskets.

DTC P0776 Pressure Control Solenoid 2 Stuck Off

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips).</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Install Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 5</td>
<td>Go to General Troubleshooting Section 8</td>
</tr>
<tr>
<td></td>
<td>2. Turn ON the ignition, leave engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Clear the DTC.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure record.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC indicates that the TCM has detected a slip condition and could not verify the correct oncoming ratio following a shift.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P0776 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td></td>
<td>Go to Step 6</td>
<td>Go to the appropriate speed sensor DTC</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the DTC failure record data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions.</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to Step 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0776 Pressure Control Solenoid 2 Stuck Off (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main, C2, and C3 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the Failure Records.
6. Read and record Main and C2 and C3 clutch pressures.
Are the pressure readings within specified values in Appendix B? | Refer to Main and Clutch Pressure specifications in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.
Are there signs of a clutch failure? | | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals.
Was a valve body problem found and repaired? | | Go to Step 11 | Go to Step 9 |
| 9 | Replace PCS2.
Is the replacement complete? | | Go to Step 11 | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | | Begin the diagnosis again.
Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0777 Pressure Control Solenoid 2 Stuck On

Refer to Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses information from the turbine and output speed sensors to detect if a clutch is in a tie-up condition or if three clutches are applied. Pressure Control Solenoid 2 (PCS2) supplies hydraulic pressure to the C3 clutch in reverse and to the C2 clutch in fourth range through sixth range. The TCM sets a DTC P0777 when it detects a tie-up condition while PCS2 is supplying hydraulic pressure to the off-going clutch.

Conditions for Running the DTC
• Hydraulic system is pressurized.
• Output speed greater than or equal to 200 rpm.
• Turbine speed greater than or equal to 200 rpm.
• Cold Mode operation not required.

Conditions for Setting the DTC
DTC P0777 sets when the transmission is shifting from range to range and the off-going range (ratio) remains engaged even though the off-going clutch is commanded OFF.

Actions Taken When the DTC Sets
• When DTC P0777 occurs, the TCM will command previous range.
• While the diagnostic response is active, the TCM ignores shift selectors inputs.
• The CHECK TRANS light illuminates.
• DTC is stored in TCM history.
• The TCM inhibits TCC engagement.
• The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• This DTC indicates the off-going clutch being controlled by PCS2 is not released or released too slowly. Common causes include:
 — Erratic turbine and output speed sensor readings.
 — An obstruction in the C2 clutch exhaust circuit.
 — A defective PCS2 solenoid.
 — A stuck PCS2 regulator valve.
• PCS2 supplies hydraulic pressure to C3 clutch in reverse and to C2 clutch in fourth range through sixth range. Review the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
• PCS1 and PCS2 are “normally high” solenoids. PCS1 and PCS2 supply full hydraulic pressure when their coils are de-energized, and no output pressure when receiving maximum current from the TCM.
DIAGNOSTIC TROUBLE CODES (DTC)

- If the condition is intermittent, connect Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 — Intermittent wiring connection
 — Excessive vibration (driveline or engine torsionals)
 — Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

Test Description

The numbers below refer to step numbers on the diagnostic table.

1. This step tests for proper transmission fluid level.
2. This step tests for active diagnostic codes.
3. This step tests ignition voltage.
4. This step tests speed sensor readings.
5. This step tests for C2 or C3 clutch pressure from PCS2.
6. This step tests for evidence of clutch failure.
7. This step tests for stuck or sticking valves and damaged valve body gaskets.

DTC P0777 Pressure Control Solenoid 2 Stuck On

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips).</td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
<td></td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Turn ON the ignition, leave engine OFF.
3. Record the failure records.
4. Clear the DTC.
5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that the TCM has detected that the off-going clutch did not release (clutch tie-up) following a shift.
Did DTC P0777 return? | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the DTC failure record data.
4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is the voltage within the specified value? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 5 | Go to General Troubleshooting Section 8 |
| 5 | 1. Start the engine and drive the vehicle under normal operating conditions.
2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display.
Is speed sensor data erratic or are dropouts in signal indicated? | Watch for erratic speed sensor signals | Go to the Appropriate Speed Sensor DTC | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0777 Pressure Control Solenoid 2 Stuck On (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main and C2 and C3 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the failure records.
6. Read and record Main, C2, and C3 clutch pressures.
Are the pressure readings within specified values in Appendix B? | Refer to Main and Clutch Pressure specifications in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.
Are there signs of a clutch failure? | | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals.
Was a valve body problem found and repaired? | | Go to Step 11 | Go to Step 9 |
| 9 | Replace PCS2.
Is the replacement complete? | | | Go to Step 11 |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | | | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0796 Pressure Control Solenoid 3 Stuck Off

Refer to Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to detect if a clutch is slipping. Pressure Control Solenoid 3 (PCS3) supplies hydraulic pressure to the C5 clutch in reverse, neutral, and first; and to the C3 clutch in third and fifth. The TCM sets a DTC P0796 when it detects a slip condition while PCS3 is supplying hydraulic pressure to the oncoming clutch.

Conditions for Running the DTC
- Hydraulic system is pressurized.
- Output speed greater than or equal to 125 rpm.
- Turbine speed greater than or equal to 60 rpm.
- Cold Mode operation not required.

Conditions for Setting the DTC
DTC P0796 sets when the TCM detects an incorrect oncoming ratio (range-to-range) for an accumulated number of occurrences.

Actions Taken When the DTC Sets
- When DTC P0796 occurs, the TCM will command previous range.
- While the Diagnostic Response is active, the TCM will ignore shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- This DTC indicates the oncoming clutch being controlled by PCS3 is not applied or applied too slowly. Common causes include:
 - Erratic turbine or output speed signals.
 - A leak or obstruction in a specific clutch apply circuit.
 - A defective solenoid.
 - A stuck PCS3 regulator valve.
 - A stuck C1 or C2 logic latch valve.
- PCS3 supplies hydraulic pressure to C5 clutch in reverse, neutral and first range; and to C3 clutch in third and fifth ranges. Review the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
DIAGNOSTIC TROUBLE CODES (DTC)

- If the condition is intermittent, connect Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

Test Description

The numbers below refer to step numbers on the diagnostic table.

1. This step tests for proper transmission fluid level.
2. This step tests for active diagnostic codes.
3. This step tests ignition voltage.
4. This step tests speed sensor readings.
5. This step tests for C3 and C5 clutch pressure from PCS3.
6. This step tests for evidence of clutch failure.
7. This step tests for stuck or sticking valves and damaged valve body gaskets.

DTC P0796 Pressure Control Solenoid 3 Stuck Off

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool. 2. Turn ON the ignition, leave engine OFF. 3. Record the failure records. 4. Clear the DTC. 5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that the TCM has detected a slip condition and could not verify the correct oncoming ratio following a shift. Did DTC P0796 return? | 9–18V (12V TCM) 18–32V (24V TCM) | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the DTC failure record data. 4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified value? | | Go to Step 5 | Go to General Troubleshooting Section 8 |
| 5 | 1. Start the engine and drive the vehicle under normal operating conditions. 2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display. Is speed sensor data erratic or are dropouts in signal indicated? | Watch for erratic speed sensor signals | Go to the appropriate speed sensor DTC | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0796 Pressure Control Solenoid 3 Stuck Off (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn the OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main, C3, and C5 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the failure records.
6. Read and record Main, C3, and C5 clutch pressures.
Are the pressure readings within specified values in Appendix B? | Refer to Main and Clutch Pressure specifications in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.
Are there signs of a clutch failure? | | | |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals.
Was a valve body problem found and repaired? | | | |
| 9 | Replace PCS3.
Is the replacement complete? | | Go to Step 11 | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | | | System OK |

Step

Action

1. Turn the OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main, C3, and C5 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the failure records.
6. Read and record Main, C3, and C5 clutch pressures.

Are the pressure readings within specified values in Appendix B?

Step

Action

Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.

Are there signs of a clutch failure?

Step

Action

Consult the service manual and remove the transmission hydraulic control module.

Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.

Inspect the suction filter. Be sure screen is not plugged.

Inspect for damaged gaskets and face seals.

Was a valve body problem found and repaired?

Step

Action

Replace PCS3.

Is the replacement complete?

Step

Action

Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.

If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).

Is the replacement complete?

Step

Action

In order to verify your repair:

1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.

Did the DTC return?
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0797 Pressure Control Solenoid 3 Stuck On

Refer to Hydraulic Schematic

Circuit Description

The Transmission Control Module (TCM) uses information from the turbine and output speed sensors to detect if a clutch is in a tie-up condition or if three clutches are applied. Pressure Control Solenoid 3 (PCS3) supplies hydraulic pressure to the C5 clutch in reverse, neutral, and first; and to the C3 clutch in third and fifth ranges. The TCM sets a DTC P0797 when it detects a tie-up condition while PCS3 is supplying hydraulic pressure to the off-going clutch.

Conditions for Running the DTC

- Hydraulic system is pressurized.
- Output speed greater than or equal to 200 rpm.
- Turbine speed greater than or equal to 200 rpm.
- Cold Mode operation not required.

Conditions for Setting the DTC

DTC P0797 sets when the transmission is shifting from range to range and the off-going range (ratio) remains engaged even though the off-going clutch is commanded OFF.

Actions Taken When the DTC Sets

- When DTC P0797 occurs, the TCM will command previous range.
- While Diagnostic Response is active, the TCM will ignore shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- This DTC indicates the off-going clutch being controlled by PCS3 is not released or released too slowly. Common causes include:
 - Erratic turbine and output speed sensor readings.
 - An obstruction in the C3 or C5 clutch exhaust circuit.
 - A defective PCS3 solenoid.
 - A stuck PCS3 regulator valve.
- PCS3 supplies hydraulic pressure to C5 clutch in reverse, neutral and first range; and to C3 clutch in third and fifth ranges. Review the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
DIAGNOSTIC TROUBLE CODES (DTC)

- If the condition is intermittent, connect Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for active diagnostic codes.
4. This step tests ignition voltage.
5. This step tests speed sensor readings.
6. This step tests for C3 or C5 clutch pressure from PCS3.
7. This step tests for evidence of clutch failure.
8. This step tests for stuck or sticking valves and damaged valve body gaskets.

DTC P0797 Pressure Control Solenoid 3 Stuck On

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips).</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Turn ON the ignition, leave engine OFF.
 3. Record the failure records.
 4. Clear the DTC.
 5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
 NOTE: This DTC indicates that the TCM has detected that the off-going clutch did not release (clutch tie-up) following a shift.
 Did DTC P0797 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Start the engine.
 3. Record the DTC failure record data.
 4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage.
 Is the voltage within the specified value? | 9–18V (12V TCM) 18–32V (24V TCM) | Go to Step 5 | Go to General Troubleshooting Section 8 |
| 5 | 1. Start the engine and drive the vehicle under normal operating conditions.
 2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display.
 Is speed sensor data erratic or are dropouts in signal indicated? | Watch for erratic speed sensor signals | Go to the appropriate speed sensor DTC | Go to Step 6 |
Diagnostic Trouble Codes (DTC)

DTC P0797 Pressure Control Solenoid 3 Stuck On (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main, C3, and C5 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the Clutch Test Mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the failure records.
6. Read and record Main, C3 and C5 clutch pressures.
Are the pressure readings within specified values in Appendix B? | Refer to Main and Clutch Pressure specifications in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.
Are there signs of a clutch failure? | | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals.
Was a valve body problem found and repaired? | Go to Step 11 | Go to Step 9 |
| 9 | Replace PCS3.
Is the replacement complete? | | Go to Step 11 |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DTC P0842 Transmission Pressure Switch 1 Circuit Low

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

ANALOG RETURN

OIL LEVEL

HALF EFFECT

SUMP TEMP

PS1

* NORMALLY CLOSED

TCM

RETARDER REQUEST SIGNAL
5V SENSOR VOLTAGE
THROTTLE POSITION OR RTDR PRESSURE SIGNAL
ANALOG RETURN
RETARDER TEMP
ENGINE TEMP
ENGINE WATER TEMP

OIL LEVEL SENSOR

SUMP TEMP

PS1 DIAGNOSTIC PRESSURE SWITCH

WIRE 156
WIRE 112
WIRE 144
WIRE 158
WIRE 175
WIRE 135
WIRE 158
WIRE 112
WIRE 116
WIRE 154
WIRE 177

Copyright © 2005 General Motors Corp.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0842 Transmission Pressure Switch 1 Circuit Low

Circuit Description
Diagnostic pressure switch 1 (PS1) is a normally closed switch. When the switch is depressurized, PS1 closes to complete a circuit between wire 177 and analog return wire 158. The Transmission Control Module (TCM) detects PS1 closed when it senses a ground on wire 177. When the switch is pressurized, PS1 opens and voltage on wire 177 goes high.

The TCM uses the signal from PS1 to confirm the following control valve functions:
- When the C5 clutch is filled as in reverse, neutral, or first range—PS1 senses PCS2 solenoid regulator valve position to verify proper C3 clutch control in these three ranges.
- When the C5 clutch is exhausted as in second through sixth ranges—PS1 monitors C1 and C2 latch valve position.

Conditions for Running the DTC
- Hydraulic system pressurized
- Initialization complete
- Transmission sump temperature greater than –15°C (5°F)

Conditions for Setting the DTC
DTC P0842 sets if the TCM detects that PS1 is EXHAUSTED when it should be PRESSURIZED. Specifically, the TCM will set a P0842 code if it senses that PS1 is EXHAUSTED during the following conditions:
- Integrity Test
 — The C5 clutch is filled and PCS2 solenoid is commanded ON, or
 — The C5 clutch is exhausted and both latch valves are stroked.
- Time Out Test
 — After a change in latch valve states that ends up with both latch valves stroked.

Actions Taken When the DTC Sets
When DTC P0842 occurs:
- The TCM will lock in range.
- While the diagnostic response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the code from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- Unlike the WTEC II/III C3 pressure switch, the Allison 4th Generation Pressure Switch 1 (PS1) closes when exhausted, and opens when pressurized.
DIAGNOSTIC TROUBLE CODES (DTC)

- DTC P0842 may be caused by:
 - Low transmission fluid level.
 - Defective PS1 pressure switch.
 - Stuck C1 or C2 latch valves.
 - Defective shift solenoid SS1.
 - Stuck diagnostic valve.
 - A short-to-ground in wire 177.
 - Worn or damaged charging pump.

- Compare transmission fluid level measurements when the engine is shutdown and when the engine is operating. Fluid level should drop after starting the engine. If level does not change, the transmission charging pump may have failed.

- Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change. It may be necessary to test for shorting-to-ground at individual wires within a harness to isolate an intermittent condition (refer to Section 4, Wire Test Procedures).

- You may have to drive the vehicle in order to experience a fault. The data obtained from failure records can be useful in reproducing failure modes when the DTC was set.

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step verifies failure conditions.
4. This step tests the entire PS1 circuit.
5. This step tests for internal short in TCM.
6. This step tests for wiring defects in OEM harness.
9. This step tests defective internal harness.
13. This step tests for active diagnostic code.
14. This step tests for low main pressure.
15. This step tests for proper function of SS1 solenoid.
16. This step tests stuck valves in the hydraulic control module.
18. This step tests for the cause of low main pressure.

DTC P0842 Transmission Pressure Switch 1 Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>

Copyright © 2005 General Motors Corp.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0842 Transmission Pressure Switch 1 Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips).</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td></td>
<td>NOTE: If transmission fluid was recently drained and refilled, allow the engine to run for a few minutes to prime the main pump and clutch apply circuits.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the transmission fluid level correct?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Install Allison DOC™ For PC–Service Tool.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Turn ON the ignition, with the engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Clear the DTC.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Start vehicle and test drive. Attempt to duplicate the same conditions observed in failure records (range attained, transmission temperature, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P0842 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 12</td>
</tr>
<tr>
<td></td>
<td>2. Disconnect the transmission 20-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Turn ON the ignition, with the engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Observe PS1 status on Allison DOC™ For PC–Service Tool.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: Allison DOC™ For PC–Service Tool should show PS1 switch status as PRESSURIZED under these test conditions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does Allison DOC™ For PC–Service Tool show PS1 EXHAUSTED?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1. Turn OFF the ignition.</td>
<td>Refer to Main and Clutch Pressure specifications in Appendix B</td>
<td>Go to Step 6</td>
<td>Go to Step 10</td>
</tr>
<tr>
<td></td>
<td>2. Install a 2000 kPa (300 psi) pressure gauge in main pressure tap.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Start the engine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Read and record main pressure.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the pressure reading within specified value in Appendix B?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DTC P0842 Transmission Pressure Switch 1 Circuit Low (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | WARNING: To help avoid injury or property damage caused by sudden and unexpected vehicle movement, do not start a stationary stall test until you:
 • Put the transmission in N (Neutral).
 • Apply the parking brake and service brake.
 • Chock the wheels and take any other steps necessary to prevent the vehicle from moving.
 • Warn personnel to keep clear of the vehicle and its path.
Refer to Main and Clutch Pressure specifications in Appendix B | Got to Step 7 | Go to Step 10 |
| 7 | 1. Verify the ignition is in the OFF position.
2. Consult appropriate transmission service manual and remove the control module from the transmission.
3. Disconnect PS1.
4. Using a DVOM, test pin 3 in the internal wiring harness for pin-to-pin shorts, and shorts-to-ground.
Were any pin-to-pin shorts or shorts-to-ground found? | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness.
Is the replacement complete? | Go to Step 17 |
| 9 | Replace pressure switch PS1.
Is the replacement complete? | Go to Step 17 |
| 10 | 1. Verify the ignition is in the OFF position.
2. Consult appropriate transmission service manual and remove the control module from the transmission.
3. Inspect the solenoid and main valve bodies for sticking or defective diagnostic valve, PCS1 and PCS2 solenoid regulator valves, or C1 and C2 latch valves.
Was a defective valve found or repaired? | Go to Step 17 | Go to Step 11 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0842 Transmission Pressure Switch 1 Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 11 | Replace the solenoid that is controlling the malfunctioning clutch (as indicated by pressure readings obtained in step 6 above).
• C1 clutch – PCS1 solenoid
• C2 clutch – PCS2 solenoid
• Both C1 and C2 clutch – SS1 solenoid | | | Go to Step 17 |
| 12 | 1. Turn OFF the ignition.
2. Install the J 47275 TCM Breakout at the TCM 80-way connector.
3. Disconnect the 16-pin bypass connector on J 47275 TCM Breakout.
4. Turn ON the ignition.
5. Observe PS status on Allison DOC™ For PC–Service Tool.
NOTE: Allison DOC™ For PC–Service Tool should show PS1 switch status as PRESSURIZED under these test conditions.
Does Allison DOC™ For PC–Service Tool show PS1 PRESSURIZED? | | | Go to Step 13 |
| 13 | 1. Turn OFF the ignition.
2. Inspect the routing of the PS1 sense wire 177 between the TCM and the transmission 20-way connector.
3. Disconnect the TCM from J 47275 TCM Breakout. Leave the OEM-side connected.
4. Reconnect the 16-pin bypass connector on J 47275 TCM Breakout.
5. Disconnect the transmission 20-way connector.
6. Using a DVOM at J 47275-1 TCM Overlay, test for wire-to-wire shorts and shorts-to-ground at pin 177 (PS1 signal).
Were short-to-ground or wire damage found? | | | Go to Step 14 \ Go to Diagnostic Aids |
| 14 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | | | Go to Step 17 |
| 15 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | | | Go to Step 17 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0842 Transmission Pressure Switch 1 Circuit Low (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 16 | Investigate the cause of low main pressure. Possible causes include:
- Collapsed main filter
- Broken converter pump or PTO gear tangs
- Worn main charging pump.
Is the cause of low main pressure repaired? | Go to Step 17 | | |
| 17 | In order to verify your repair:
1. Clear the DTC.
2. Use Allison DOC™ For PC–Service Tool to monitor pressure switch PS1 status.
3. Drive the vehicle under conditions noted in failure records.
Did the DTC P0842 return? | Begin the diagnosis again.
Go to Step 1 | System OK | |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0843 Transmission Pressure Switch 1 Circuit High

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

ANALOG RETURN

OIL LEVEL

HALL EFFECT

SUMP TEMP

PS1

* NORMALLY CLOSED

TCM

RETARDER REQUEST SIGNAL

5V SENSOR VOLTAGE

THROTTLE POSITION OR RTDR PRESSURE SIGNAL

ANALOG RETURN

RETARDER TEMP

ENGINE TEMP

ENGINE WATER TEMP

OIL LEVEL SENSOR

SUMP TEMP

PS1 DIAGNOSTIC PRESSURE SWITCH
DTC P0843 Transmission Pressure Switch 1 Circuit High

Circuit Description
The TCM uses diagnostic pressure switch Pressure Switch 1 (PS1) to confirm the following control valve function. While C5 clutch is filled as in reverse, neutral, or first range, PS1 senses Pressure Control Switch 2 (PCS2) solenoid regulator valve position to verify C3 clutch control in these three ranges. While C5 is exhausted as in second through sixth ranges, PS1 monitors C1 and C2 latch valve positions.

PS1 is a normally closed switch. When the switch is depressurized, PS1 closes to complete a circuit between wire 177 and analog return wire 158. The TCM detects PS1 closed when it senses a ground on wire 177. When the switch is pressurized, PS1 opens and voltage on wire 177 goes high.

Conditions for Running the DTC
• Hydraulic system pressurized
• Initialization complete
• Transmission sump temperature greater than –15ºC (5ºF)

Conditions for Setting the DTC
DTC P0843 sets if the TCM detects that PS1 is pressurized in the following situations:
• Integrity Test
 — The C5 clutch is exhausted or PCS2 solenoid is commanded OFF, and at least one C1 and C2 latch valve is de-stroked.
• Time Out Test
 — After a change in latch valve states that starts with both latch valves stroked and ends up with at least one latch valve de-stroked.

Actions taken when the DTC Sets
When DTC P0843 occurs:
— The TCM will lock in range.
— While the diagnostic response is active, the TCM ignores shift selector inputs.
— The CHECK TRANS light illuminates.
— DTC is stored in TCM history.
— The TCM inhibits torque converter clutch (TCC) engagement.
— The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
DIAGNOSTIC TROUBLE CODES (DTC)

- When only a P0843 is set, look for an intermittent open in the pressure switch circuit.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change. It may be necessary to test for shorting-to-ground at individual wires within a harness to isolate an intermittent condition (refer to Section 4, Wire Test Procedures).
- You may have to drive the vehicle in order to experience a fault. The data obtained from failure records can be useful in reproducing failure modes when the DTC was set.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step verifies failure conditions.
4. This step tests the TCM for PS1 switch status.
5. This step tests for internal open in TCM.
6. This step tests for wiring defects (opens) in OEM harness.
9. This step tests for opens in the internal harness.

DTC P0843 Transmission Pressure Switch 1 Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Check Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool. 2. Turn ON the ignition, with the engine OFF. 3. Record failure records. 4. Clear the DTC. 5. Start vehicle and test drive. Attempt to duplicate the same conditions observed in failure records (range attained, transmission temperature, etc.).
NOTE: This DTC indicates that an open circuit condition may exist in the OEM harness, internal transmission harness, or PS1 diagnostic pressure switch. Did DTC P0843 return? | | Go to Step 4 | Go to Diagnostic Aids |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0843 Transmission Pressure Switch 1 Circuit High (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 4 | 1. Turn OFF the ignition.
2. Disconnect the transmission 20-way connector.
3. Connect the OEM-side of the 20-way connector to the J 47279 Transmission Breakout. Leave the transmission-side disconnected.
4. At J 47279-1 Transmission Overlay, install a jumper between pin 3 and a known good ground.
5. Turn ON the ignition, with the engine OFF.
6. Observe PS1 status on Allison DOC™ For PC–Service Tool.
 Does Allison DOC™ For PC–Service Tool show PS1 PRESSURIZED? | Go to Step 5 | Go to Step 9 |
| 5 | 1. Turn OFF the ignition.
2. Install the J 47275 TCM Breakout at the TCM 80-way connector.
3. Disconnect the 16-pin bypass connector on J 47275 TCM Breakout.
4. At J 47275-1 TCM Overlay, install a jumper between pin 77 and ground (pin 9 or pin 69).
5. Turn ON the ignition. Leave the engine OFF.
 Does Allison DOC™ For PC–Service Tool show PS1 PRESSURIZED? | Go to Step 8 | Go to Step 6 |
| 6 | 1. Turn OFF the ignition.
2. Inspect the routing of the PS1 sense wire 177 between the TCM and transmission 20-way connector.
3. Disconnect the TCM from J 47275 TCM Breakout. Leave the OEM-side connected.
4. Reconnect the 16-pin bypass connector on J 47275 TCM Breakout.
5. Disconnect the transmission 20-way connector.
6. Test for opens on wire 177.
 Were opens or wire damage found? | Go to Step 7 | Go to Diagnostic Aids |
| 7 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | Go to Step 12 |
| 8 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 12 |
Diagnostic Trouble Codes (DTC)

DTC P0843 Transmission Pressure Switch 1 Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 9 | 1. Consult appropriate transmission service manual and remove the control module from the transmission.
2. Disconnect PS1.
3. Using a DVOM, test for continuity across pressure switch PS1.
Is there continuity across pressure switch PS1? | Go to Step 10 | | Go to Step 11 |
| 10 | Replace the internal wiring harness.
Is the replacement complete? | | | Go to Step 12 |
| 11 | Replace the pressure switch PS1.
Is the replacement complete? | | | Go to Step 12 |
| 12 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor pressure switch PS1 status.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
Circuit Description

The Transmission Control Module (TCM) requires a switched ignition voltage input and a direct battery voltage input. This switched ignition voltage signal originates from the ignition switch or an ignition relay to supply voltage to pin 63 in the 80-way connector at the TCM. Battery direct voltage is supplied to pins 10 and 70 at the 80-way connector.

Conditions for Running the DTC

This test is continuously enabled.

Conditions for Setting the DTC

DTC P0880 sets during the next ignition cycle if battery power is lost before the power down process is complete and the engine is running.

Actions Taken When the DTC Sets

When DTC P0880 is active, the following conditions will occur:

• The TCM does not illuminate the CHECK TRANS light.
• DTC is stored in TCM history.
• The TCM loses adaptive information for the drive cycle.
• The TCM reverts to previous adaptive settings.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0880 TCM Power Input Signal

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• DTC P0880 may set if battery disconnects are opened before switching OFF ignition.
• You may have to drive the vehicle in order to experience a fault.
• Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper battery voltage.
3. This step tests for proper charging system operation.
4. This step tests for proper system voltage.
5. This step tests for proper ignition voltage.

DTC P0880 TCM Power Input Signal

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>10.5V (12V TCM) 22V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve battery problem. Go to Step 7</td>
</tr>
<tr>
<td></td>
<td>2. Turn the ignition to the RUN position with the engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the DTC failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Using a digital multimeter (DVOM), measure and record voltage at the battery terminals.</td>
<td>Is voltage greater than specified value?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Start the engine and warm to normal operating temperature.</td>
<td></td>
<td>Repair charging system</td>
<td>Go to Step 4</td>
</tr>
<tr>
<td></td>
<td>Is the Alternator/Check Engine lamp ON?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P0880 TCM Power Input Signal (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 4 | 1. Increase engine speed to 1000–1500 rpm.
 2. Using Allison DOC™ For PC–Service Tool, monitor system voltage.
 Is the voltage within the specified values? | 13–15V (12V TCM)
 25–30V (24V TCM) | Go to Step 5 | Repair charging system |
| 5 | 1. Turn OFF the ignition.
 2. Disconnect the 80-way connector from the TCM and install J 47275 TCM Breakout between the OEM and TCM connectors.
 3. Using a DVOM, measure voltage between 80-way connector pins 9 and 10 with ignition OFF.
 4. Turn ON the ignition, leave engine OFF.
 5. Using a DVOM, measure voltage between 80-way connector pins 9 and 63 with ignition ON.
 6. Subtract the voltage reading obtained in Step 5 from the voltage reading obtained in Step 3.
 Is the difference between Step 3 voltage and Step 5 voltage greater than the specified value? | 0.5V | Go to Step 6 | Go to Diagnostic Aids |
| 6 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
 Repair the vehicle wiring harness.
 Is the repair complete? | | | Go to Step 7 |
| 7 | In order to verify your repair:
 1. Clear the DTC.
 2. Start the engine and warm to normal operating temperature.
 3. Using Allison DOC™ For PC–Service Tool, monitor system voltage. System voltage should be 9–18V.
 Did the DTC return? | | | System OK |

Copyright © 2005 General Motors Corp.
Diagnostic Trouble Codes (DTC)

DTC P0881 TCM Power Input Signal Performance

Circuit Description

The Transmission Control Module (TCM) requires a switched ignition voltage input and a direct battery voltage input. This switched ignition voltage signal originates from the ignition switch or an ignition relay to supply voltage to pin 63 in the 80-way connector at the TCM. Battery voltage is supplied to pins 10 and 70 at the 80-way connector.

Conditions for Running the DTC

Engine speed is greater than 500 rpm for at least 1.5 seconds.

Conditions for Setting the DTC

DTC P0881 sets under the following conditions:

- The TCM detects direct battery voltage below 5.5V. When battery voltage drops below 5.5V for 10 samples, a fault pending is reported. DTC P0881 is set if voltage remains below 5.5V for 20 samples.

- The TCM detects a large variation in direct battery voltage. When battery voltage varies by 4.0V or more for 10 samples, a fault pending is reported. DTC P0881 is set if ignition or battery voltage varies by 4.0V or more for 20 samples.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0881 TCM Power Input Signal Performance

Actions Taken When the DTC Sets

When DTC P0881 is active, the following conditions will occur:

- The CHECK TRANS light does not illuminate.
- DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- You may have to drive the vehicle in order to experience a fault.
- This DTC indicates a variation in direct battery voltage.
 - Battery voltage problems may be due to loose or corroded battery cables, a bad connection at the battery direct feed terminal (10 or 70), or an internal TCM failure due to a burnt trace.
 - A vehicle charging system failure may cause this DTC under certain circumstances.
- This code may indicate that an internal voltage problem has occurred inside the TCM. The use of a substitute TCM would be a good way to diagnose this problem.
- A defective vehicle battery may induce this DTC.
- Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for an active DTC.
3. This step tests for proper direct battery input voltage.
4. This step tests for shorts or open conditions at direct battery input circuit.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0881 TCM Power Input Signal Performance

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Turn ON the ignition, leave engine OFF.
3. Record the failure records.
4. Clear the DTC.
5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that a voltage variation exists in the battery input circuit. This variation is measured for min. and max. voltage values. This DTC sets if the voltage variation is present for a predetermined number of samples.
Did DTC P0881 return? | | Go to Step 3 | Go to Diagnostic Aids |
| 3 | 1. Turn OFF the ignition.
2. Disconnect the 80-way connector at the TCM.
3. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors.
4. Using a digital multimeter (DVOM), sequentially measure voltage at 80-way connector pins 9 and 10, then between pins 69 and 70.
Is the voltage within the specified values? | 11.5–12.5V | Repair charging system | Go to Step 4 |
| 4 | | | | Go to Step 5 |
| 5 | In order to verify your repair:
1. Clear the DTC.
2. Start the engine and warm to normal operating temperature.
3. Using Allison DOCTM For PC–Service Tool, monitor system voltage. System voltage should be 9–18V.
Did the DTC return? | | | | System OK |
Circuit Description

The Transmission Control Module (TCM) receives power directly from the battery. Wires 110 and 170 supply direct battery power to pins 10 and 70 respectively at the TCM.

Conditions for Running the DTC

Engine has been running for more than 10 seconds and engine speed is greater than 450 rpm.

Conditions for Setting the DTC

DTC P0882 sets under the following condition:

- The TCM detects battery voltage below 8V at 0°C (32°F) for six times. The voltage threshold is temperature dependent varying from 5V at –60°C (–75°F) to 9V at 20°C (68°F).
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0882 TCM Power Input Signal Low

Actions Taken When the DTC Sets

When DTC P0882 is active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determine the range attained.
- TCM inhibits TCC engagement.
- TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- A defective vehicle battery may allow this DTC to set. Test the vehicle battery to verify proper voltage and load capacity.
- A defective vehicle charging system may cause this DTC.
- Intermittent faults may exist in vehicle components such as a poor connection at the battery posts. Such faults would cause this DTC to set and not remain active.
- Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper battery voltage.
3. This step tests for an active DTC.
4. This step tests vehicle battery per OEM guidelines.
5. This step tests vehicle charging system per OEM guidelines.
DTC P0882 TCM Power Input Signal Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Turn ON the ignition, leave engine OFF.
 3. Record the failure records.
 4. Clear the DTC.
 5. Observe the battery voltage value on Allison DOC™ For PC–Service Tool.
 NOTE: This DTC sets when battery voltage drops below a predetermined level that is temperature dependent for a pre-determined number of detections.
 Is the battery voltage below specified value? | 9–18V (12V TCM)
 18–32V (24V TCM) | Go to Step 4 | Go to Step 3 |
| 3 | 1. Start the vehicle, if possible.
 2. If the DTC is not active, drive the vehicle.
 Attempt to duplicate the same operating conditions observed in the failure records.
 Did the DTC return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | Test the vehicle battery per OEM instructions. This should include a voltage test and a load test.
 Does test indicate the battery is good? | Refer to OEM for correct battery specifications | Go to Step 5 | Replace vehicle battery. Go to Step 6 |
| 5 | Test the vehicle charging system per the OEM recommended testing procedure.
 Is the charging system operating properly? | Refer to OEM for correct charging system specifications | Go to Diagnostic Aids | Repair the charging system. Go to Step 6 |
| 6 | In order to verify your repair:
 1. Clear the DTC.
 2. Start the engine and warm to normal operating temperature.
 Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0883 TCM Power Input Signal High

Circuit Description

The Transmission Control Module (TCM) receives power directly from the battery. Wires 110 and 170 supply direct battery power to pins 10 and 70 respectively at the TCM.

Conditions for Running the DTC

Engine has been running for more than 10 seconds and engine speed is greater than 450 rpm.

Conditions for Setting the DTC

DTC P0883 sets under the following conditions:

- 12V TCM—The TCM detects an ignition voltage greater than or equal to 16V for 6 out of 10 samples.
- 24V TCM—The TCM detects an ignition voltage greater than or equal to 32V for 6 out of 10 samples.
DTC P0883 TCM Power Input Signal High

Actions Taken When the DTC Sets
When DTC P0883 is active, the following conditions will occur:

- The CHECK TRANS light does not illuminate.
- DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- A defective vehicle charging system that is overcharging may cause this DTC.
- Intermittent faults may exist in vehicle components such as a poor connection at the battery posts. Such faults would cause this DTC to set and not remain active.
- Inspect the wiring for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- DTC P0883 may set if an A41 or A42 TCM is installed in a 24V electrical system.

Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper battery voltage.
3. This step tests for an active DTC.
4. This step tests vehicle charging system per OEM guidelines.
DTC P0883 TCM Power Input Signal High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Turn ON the ignition, leave engine OFF.
3. Record the failure records.
4. Clear the DTC.
5. Observe the battery voltage value on Allison DOC™ For PC–Service Tool.
NOTE: This DTC sets when battery voltage is detected at or above a predetermined level for a predetermined number of samples.
Is the battery voltage at or above specified value? | Refer to Conditions for Setting DTC | Go to Step 4 | Go to Step 3 |
| 3 | 1. Start the vehicle, if possible.
2. If the DTC is not active, drive the vehicle.
 Attempt to duplicate the same operating conditions observed in the failure records.
Did the DTC return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | Test the vehicle charging system per the OEM recommended testing procedure.
Is the charging system operating properly? | Refer to OEM for correct charging system specifications | Go to Diagnostic Aids | Repair the charging system. Go to Step 5 |
| 5 | In order to verify your repair:
1. Clear the DTC.
2. Start the engine and warm to normal operating temperature.
Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0894 Transmission Component Slipping

Refer to First Range Hydraulic Schematic

Circuit Description

The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to verify the transmission has attained first range when the operator selects D (Drive). If the TCM does not detect turbine speed pull down following the shift into D (Drive), the TCM sets a Code P0894.

Conditions for Running the DTC

- Hydraulic system is pressurized.
- Hydraulic default condition not present.
- Engine initialization or shutdown is not in progress.

Conditions for Setting the DTC

DTC P0894 sets when first range is selected and turbine speed remains above a calibrated value.

Actions Taken When the DTC Sets

When DTC P0894 is active, the following conditions will occur:

- The TCM commands first range.
- While diagnostic response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits torque converter clutch (TCC) engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the code from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- You may have to clear the DTC and drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing failures mode where DTC was set.
- DTC P0894 may be caused by the following:
 - Improper transmission fluid level
 - Stuck solenoid regulator valve
 - Stuck C1 or C2 latch valve
 - Defective pressure control or shift solenoid
 - Mechanical problem with the C1 or C5 clutch
- If this code is accompanied by a P0701, troubleshoot and correct the cause of the P0701 first.
Diagnostic Trouble Codes (DTC)

Test Description

The numbers below refer to step numbers on the diagnostic table.

1. This step tests for presence of a code P0701.
2. This step tests for improper transmission fluid level.
3. This step tests for active diagnostic codes.
4. This step tests for low main pressure.
5. This step tests for proper clutch pressures in first range.
6. This step tests for signs of a clutch failure.

DTC P0894 Transmission Component Slipping

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td>Go to Step 2, Beginning the Troubleshooting Process</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>If DTC P0701 is present, troubleshoot and resolve before going to the next step. Is a DTC P0701 present?</td>
<td>Go to DTC P0701 and resolve before proceeding to Step 3</td>
<td>Go to Step 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Perform the Fluid Check Procedure (refer to mechanic’s tips). Is the transmission fluid level correct?</td>
<td>Go to Step 4</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record DTC failure record data. 4. Clear the DTC. 5. Drive the vehicle under normal operating conditions. Did DTC P0894 return?</td>
<td>Go to Step 5</td>
<td>Go to Diagnostic Aids</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1. Turn OFF the ignition. 2. Install a 2000 kPa (300 psi) pressure gauge in the main pressure tap. 3. Start the engine. 4. Read and record main pressure. Is the pressure reading within the specified value in Appendix B?</td>
<td>See Main and Clutch Pressure specifications in Appendix B</td>
<td>Go to Step 6</td>
<td>Go to Step 10</td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition. 2. Install 2000 kPa (300 psi) pressure gauges in main, C1 and C5 pressure taps. 3. Start the engine. 4. Select Drive and shift the transmission into first range. 5. Read and record Main, C1, and C5 clutch pressures. Are the pressure readings within specified values in Appendix B?</td>
<td>See Main and Clutch Pressure specifications in Appendix B</td>
<td>Go to Step 7</td>
<td>Go to Step 8</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0894 Transmission Component Slipping

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection. Are there signs of a clutch failure?</td>
<td></td>
<td>Go to Step 11</td>
<td>Go to Diagnostic Aids</td>
</tr>
</tbody>
</table>
| 8 | 1. Consult the appropriate service manual and remove the transmission hydraulic control module.
 2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
 3. Inspect the suction filter. Be sure screen is not plugged.
 4. Inspect for damaged gaskets and face seals.
 Was a valve body problem found and repaired? | | Go to Step 12 | Go to Step 9 |
| 9 | Using pressure readings obtained in Step 6 above, replace the affected solenoid.
 • Incorrect C1 pressure—PCS1
 • Incorrect C5 pressure—PCS3
 Is the replacement complete? | | Go to Step 12 | |
| 10 | Investigate the cause of low main pressure. Possible causes include:
 • Collapsed main filter
 • Broken converter pump or PTO gear tangs
 • Worn main charging pump
 Is the cause of low main pressure repaired? | | Go to Step 12 | |
| 11 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
 If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
 Is the replacement complete? | | Go to Step 12 | |
| | In order to verify your repair:
 1. Clear the DTC.
 2. Drive the vehicle under normal operating conditions.
 Did the DTC return? | | Begin the diagnosis again.
 Go to Step 1 | System OK |
DTC P0960 Pressure Control Solenoid Main Mod Control Circuit Open

Circuit Description

Pressure control solenoid Main Mod solenoid is a normally closed (N/C) solenoid used to modulate the transmission main pressure schedule. The TCM commands the solenoid ON when specific transmission and engine conditions are met. When the Main Mod solenoid is commanded ON, pressure is routed to the main regulator valve lowering the main pressure schedule.

The TCM sends control current to the Main Mod solenoid from High Side Driver 1 (HSD1) via wire 111. HSD1 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to the Main Mod solenoid by switching the Main Mod solenoid’s Low Side Driver ON and OFF. Wire 174 completes the circuit between the Main Mod solenoid and its Low Side Driver (LSD). DTC P0960 indicates that the TCM has detected an open condition in the Main Mod solenoid electrical circuit. The open condition may exist in the high side (wire 111) or low side (wire 174).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0960 Pressure Control Solenoid Main Mod Control Circuit Open

Conditions for Setting the DTC

DTC P0960 is set when the TCM detects an open circuit on the Main Mod solenoid return circuit for more than 2 seconds.

Actions Taken When the DTC Sets

When DTC P0960 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P0960 indicates an open in the electrical circuit for the Main Mod solenoid. In addition to the Main Mod solenoid, HSD1 also supplies power to Pressure Control Solenoids 4 (PCS4) and PCS6. If DTC P0960 is accompanied by DTC P2718 (PCS4 open circuit) and/or DTC P2812 (PCS6 open circuit), the open is most likely in the high side of the circuit.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests the OEM harness for an excessive voltage drop caused by an open condition in either wire 111 or wire 174 of the OEM chassis harness.
6. This step tests for an open condition in the transmission internal harness.
7. This step tests for the proper the Main Mod solenoid resistance.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0960 Pressure Control Solenoid Main Mod Control Circuit Open

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem.
Go to Step 11 |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect an open condition in the Main Mod solenoid electrical circuit.
Did DTC P0960 return? | | Go to Step 4 | Go to Diagnostic Aids |
Diagnostic Trouble Codes (DTC)

DTC P0960 Pressure Control Solenoid Main Mod Control Circuit Open (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors.
3. Install J 47279 Transmission Breakout between the OEM and transmission 20-way connectors.
4. Turn ON the ignition, leave engine OFF.
5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command the Main Mod solenoid ON.
6. Determine the voltage drop in the high side of the Main Mod solenoid circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 11 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 1 and isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.
7. Determine the voltage drop in the low side of the Main Mod solenoid circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 74 and an isolated ground.
 • At J 47279 Transmission Breakout, measure voltage between pin 8 and ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.
NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness.
Did either high-side or low-side voltage drop exceed 0.5VDC?</td>
<td></td>
<td></td>
<td>Go to Step 5</td>
</tr>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete?</td>
<td></td>
<td></td>
<td>Go to Step 11</td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition.
2. Disconnect the OEM 20-way connector from J 47279 Transmission Breakout. Leave the transmission 20-way connector connected to the breakout.
3. Using a digital multimeter (DVOM), measure the resistance between pin 1 and pin 8 of the transmission 20-way connector.
Is the resistance within the specified value?</td>
<td>refer_to_solenoid_resistance_chart(appendix_k)_</td>
<td></td>
<td>Go to Step 10</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P0960 Pressure Control Solenoid Main Mod Control Circuit Open (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 7 | 1. Remove the hydraulic control module assembly.
 2. Disconnect the Main Mod solenoid from the internal wiring harness.
 3. Using a DVOM, measure the Main Mod solenoid resistance at pins A and B.
 Is resistance within the specified values? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness.
 Is the replacement complete? | | Go to Step 11 | |
| 9 | Replace the Main Mod solenoid.
 Is the replacement complete? | | Go to Step 11 | |
| 10 | **NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.**
 Refer to TCM diagnostic procedure, Section 3–6.
 Is Section 3–6 complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
 1. Clear the DTC.
 2. Drive the vehicle under normal operating conditions.
 Did the DTC return? | Begin the diagnosis again.
 Go to Step 1 | System OK | |
DTC P0962 Pressure Control Solenoid Main Mod Control Circuit Low

Circuit Description

Main Mod solenoid is a normally closed (N/C) solenoid used to modulate the transmission main pressure schedule. The TCM commands the solenoid ON when specific transmission and engine conditions are met. When the Main Mod solenoid is commanded ON, pressure is routed to the main regulator valve lowering the main pressure schedule.

The TCM sends control current to the Main Mod solenoid from High Side Driver 1 (HSD1) via wire 111. HSD1 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to the Main Mod solenoid by switching the Main Mod solenoid’s Low Side Driver (LSD) ON and OFF. Wire 174 completes the circuit between the Main Mod solenoid and its LSD. DTC P0962 indicates that the TCM has detected a short-to-ground condition in the low side of the Main Mod solenoid electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0962 is set when the TCM detects a short-to-ground in the Main Mod solenoid return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0962 Pressure Control Solenoid Main Mod Control Circuit Low

Actions Taken When the DTC Sets

When DTC P0962 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determine the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P0962 indicates a short-to-ground in the electrical circuit for the Main Mod solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
TEST DESCRIPTION

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 174.
6. This step tests for wire-to-wire shorts or a short-to-ground in the internal transmission harness.

DTC P0962 Pressure Control Solenoid Main Mod Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Monitor ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem. Go to Step 11</td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC. 2. Start the engine and test drive the vehicle. 3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.). Did DTC P0962 return?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps. 1. Turn OFF the ignition. 2. Disconnect the TCM 80-way connectors. 3. Install the OEM-side 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected. 4. Disconnect the transmission 20-way connector. 5. Inspect the routing of wire 174 in the chassis harness between the TCM and transmission connector. 6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 74 and all other pins in the 80-way connector, and shorts-to-ground between pin 74 and chassis ground. Were any wire-to-wire shorts or shorts-to-ground wiring defects found?</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P0962 Pressure Control Solenoid Main Mod Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using DVOM, test for wire-to-wire shorts between pin 8 and all other pins in the 20-way connector, and shorts-to-ground between pin 8 and chassis ground. **NOTE:** The resistance value between pins 8 and 1, and between pins 8 and 20 will read normal solenoid resistance. The resistance value between pins 8 and 2, and between 8 and 7 (7-speed models) will be twice normal solenoid resistance. Were any wire-to-wire shorts or shorts-to-ground found? | Go to Step 11 | Go to Step 7 | Go to Step 10 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts or shorts-to-ground. Were any wire-to-wire shorts or shorts-to-ground found? | Go to Step 8 | Go to Step 9 | |
| 8 | Replace the internal wiring harness. Is the replacement complete? | Go to Step 11 | | |
| 9 | Replace the Main Mod solenoid. Is the replacement complete? | Go to Step 11 | | |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | Go to Step 11 | | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions. Did the DTC return? | **Begin the diagnosis again. Go to Step 1** | System OK | |
Circuit Description

Main Modulation Solenoid (Main Mod) is a normally closed (N/C) solenoid used to modulate the transmission main pressure schedule. The TCM commands the solenoid ON when specific transmission and engine conditions are met. When the Main Mod solenoid is commanded ON, pressure is routed to the main regulator valve lowering the main pressure schedule.

The TCM sends control current to the Main Mod solenoid from High Side Driver 1 (HSD1) via wire 111. HSD1 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to the Main Mod solenoid by switching the Main Mod solenoid’s Low Side Driver (LSD) ON and OFF. Wire 174 completes the circuit between the Main Mod solenoid and its LSD. DTC P0963 indicates that the TCM has detected a short-to-battery condition in the low side of the Main Mod solenoid’s electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0963 is set when the TCM detects a short-to-battery in the Main Mod solenoid return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0963 Pressure Control Solenoid Main Mod Control Circuit High

Actions Taken When the DTC Sets

When DTC P0963 is active, the following conditions will occur:

• The CHECK TRANS light illuminates.
• DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

• DTC P0963 indicates a short-to-battery in the electrical circuit for the Main Mod solenoid.
• You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
• Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
• Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOCTM For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts between wire 174 and other wires in the OEM chassis harness.
6. This step tests for the wire-to-wire shorts in the transmission internal harness.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem.
Go to Step 11 |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect a short-to-battery condition in the Main Mod solenoid electrical circuit.
Did DTC P0963 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | **NOTE:** Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Disconnect the 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the transmission 20-way connector.
5. Inspect the routing of wires 111 and 174 in the chassis harness between the TCM and the transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 74 and all other pins in the 80-way connector, and shorts-to-ground between pin 74 and chassis ground.
Were any wire-to-wire shorts found? | | Go to Step 5 | Go to Step 6 |
Diagnostic Trouble Codes (DTC)

DTC P0963 Pressure Control Solenoid Main Mod Control Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 8 and all other pins in the 20-way connector.
NOTE: The resistance value between pins 8 and 1, and between pins 8 and 20 will read normal solenoid resistance. The resistance value between pins 8 and 2, and between 8 and 7 (7-speed models) will be twice normal solenoid resistance.
Were any wire-to-wire shorts found? | Go to Step 7 | Go to Step 10 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts.
Were any wire-to-wire shorts found? | Go to Step 8 | Go to Step 9 |
| 8 | Repair or replace the internal wiring harness. Is the repair complete? | Go to Step 11 |
| 9 | Replace the Main Mod solenoid. Is the replacement complete? | Go to Step 11 |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0964 Pressure Control Solenoid 2 (PCS2) Control Circuit Open

Circuit Description

Pressure Control Solenoid 2 (PCS2) is a normally open (N/O) solenoid used to apply the C2 clutch in fourth through sixth range, and the C3 clutch in Reverse. The TCM commands the solenoid OFF to produce hydraulic pressure in the clutch apply circuit. When PCS2 is commanded ON, the C2 clutch is released.

The TCM sends control current to PCS2 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS2 by switching PCS2 Low Side Driver (LSD) ON and OFF. Wire 152 completes the circuit between PCS2 and its LSD. DTC P0964 indicates that the TCM has detected an open condition in PCS2 electrical circuit. The open condition may exist in the high side (wire 171) or low side (wire 152).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0964 is set when the TCM detects an open circuit on the PCS2 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0964 Pressure Control Solenoid 2 (PCS2) Control Circuit Open

Actions Taken When the DTC Sets
When DTC P0964 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P0964 indicates an open in the electrical circuit for the PCS2 solenoid. In addition to PCS2, HSD2 also supplies power to solenoids PCS1, PCS3, and SS1. If DTC P0964 is accompanied by DTC P2727 (PCS1 open circuit) and/or DTC P0968 (PCS3 open circuit), the open is most likely in the high side of the circuit.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests the OEM harness for an excessive voltage drop caused by open condition in either wire 171 or wire 152 of the OEM chassis harness.
6. This step tests for an open condition in the transmission internal harness.
7. This step tests for the proper PCS2 resistance.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0964 Pressure Control Solenoid 2 (PCS2) Control Circuit Open

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem. Go to Step 11 |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect an open condition in the PCS2 electrical circuit.
Did DTC P0964 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | NOTE: Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors.
3. Install J 47279 Transmission Breakout between the OEM and transmission 20-way connectors.
4. Turn ON the ignition, leave engine OFF.
5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command PCS2 ON.
6. Determine the voltage drop in the high side of the PCS2 circuit as follows:
• At J 47275-1 TCM Overlay, measure voltage between pin 71 and an isolated ground.
• At J 47279-1 Transmission Overlay, measure voltage between pin 6 and an isolated ground.
• Subtract the two voltage measurements to obtain the voltage drop in the circuit.
7. Determine the voltage drop in the low side of the PCS2 circuit as follows:
• At J 47275-1 TCM Overlay, measure voltage between pin 52 and an isolated ground.
• At J 47279-1 Transmission Overlay, measure voltage between pin 5 and an isolated ground.
• Subtract the two voltage measurements to obtain the voltage drop in the circuit.
NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness.
Did either high-side or low-side voltage drop exceed 0.5VDC? | | Go to Step 5 | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0964 Pressure Control Solenoid 2 (PCS2) Control Circuit Open (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Disconnect the OEM 20-way connector from J 47279 Transmission Breakout. Leave the transmission 20-way connector connected to the breakout.
3. Using a digital multimeter (DVOM), measure the resistance between pin 5 and pin 6 of the transmission 20-way connector. Is the resistance within the specified value? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 10 | Go to Step 7 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Disconnect PCS2 from the internal wiring harness.
3. Using a DVOM, measure PCS2 resistance at pins A and B. Is resistance within the specified values? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness. Is the replacement complete? | | Go to Step 11 |
| 9 | Replace PCS2. Is the replacement complete? | | Go to Step 11 |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions. Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
Circuit Description

Pressure Control Solenoid 2 (PCS2) is a normally open (N/O) solenoid used to apply the C2 clutch in fourth through sixth range and the C3 clutch in reverse. The TCM commands the solenoid OFF to produce hydraulic pressure in the clutch apply circuit. When PCS2 is commanded ON, the C2 clutch is released.

The TCM sends control current to PCS2 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS2 by switching PCS2 Low Side Driver (LSD) ON and OFF. Wire 152 completes the circuit between PCS2 and its LSD. DTC P0966 indicates that the TCM has detected a short-to-ground condition in the low side of PCS2 electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0966 is set when the TCM detects a short-to-ground in the PCS2 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0966 Pressure Control Solenoid 2 (PCS2) Control Circuit Low

Actions Taken When the DTC Sets
When DTC P0966 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P0966 indicates a short-to-ground in the electrical circuit for the PCS2 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 152.
6. This step tests for the wire-to-wire shorts or a short-to-ground in the internal transmission harness.

DTC P0966 Pressure Control Solenoid 2 (PCS2) Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem. Go to Step 11</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Monitor ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the voltage within the specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine and test drive the vehicle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC is intended to detect a short-to-ground condition in the PCS2 electrical circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P0966 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td></td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Disconnect the TCM 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Disconnect the transmission 20-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Inspect the routing of wire 152 in the chassis harness between the TCM and transmission connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 52 and all other pins in the 80-way connector, and short-to-ground between pin 52 and chassis ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Were any wire-to-wire shorts or shorts-to-ground wiring defects found?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0966 Pressure Control Solenoid 2 (PCS2) Control Circuit Low (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition. 2. Install J 47279 Transmission Breakout to transmission 20-way connector. Leave the OEM harness disconnected. 3. Using a DVOM, test for wire-to-wire shorts between pin 5 and pin 6 of the 20-way connector, or shorts-to-ground between pin 5 and chassis ground. NOTE: The resistance value between pins 5 and 6 will read normal solenoid resistance. The resistance between pins 5 and 4, between 5 and 9, and between pins 5 and 10 will be twice normal solenoid resistance. Refer to Solenoid Resistance chart for these values. Were any wire-to-wire shorts or shorts-to-ground found?</td>
<td>Go to Step 7</td>
<td>Go to Step 10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. Remove the hydraulic control module assembly. 2. Inspect the internal harness for wire-to-wire shorts or shorts-to-ground. Were any wire-to-wire shorts or shorts-to-ground found?</td>
<td>Go to Step 8</td>
<td>Go to Step 9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Repair or replace the internal wiring harness. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Replace PCS2. Is the replacement complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under normal operating conditions. Did the DTC return?</td>
<td>System OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Circuit Description

Pressure Control Solenoid 2 (PCS2) is a normally open (N/O) solenoid used to apply the C2 clutch in fourth through sixth range and the C3 clutch in reverse. The TCM commands the solenoid OFF to produce hydraulic pressure in the clutch apply circuit. When PCS2 is commanded ON, the C2 clutch is released.

The TCM sends control current to PCS2 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS2 by switching PCS2 Low Side Driver (LSD) ON and OFF. Wire 152 completes the circuit between PCS2 and its LSD. DTC P0967 indicates that the TCM has detected a short-to-battery condition in the low side of PCS2 electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0967 is set when the TCM detects a short-to-battery in the PCS2 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0967 Pressure Control Solenoid 2 (PCS2) Control Circuit High

Actions Taken When the DTC Sets

When DTC P0967 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOCTM For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P0967 indicates a short-to-battery in the electrical circuit for the PCS2 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the Hertz button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOCTM For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts between wire 152 and other wires in the OEM chassis harness.
6. This step tests for the wire-to-wire shorts in the transmission internal harness.

DTC P0967 Pressure Control Solenoid 2 (PCS2) Control Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
 Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem. Go to Step 11 |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
 Did DTC P0966 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | NOTE: Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the transmission 20-way connector.
5. Inspect the routing of wires 171 and 152 in the chassis harness between the TCM and transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 52 and all other pins in the 80-way connector, and short-to-ground between pin 52 and chassis ground.
 Were any wire-to-wire shorts or shorts-to-ground wiring defects found? | | Go to Step 5 | Go to Step 6 |
Diagnostic Trouble Codes (DTC)

DTC P0967 Pressure Control Solenoid 2 (PCS2) Control Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 5 and all other pins in the 20-way connector. **NOTE:** The resistance value between pins 5 and 6 will read normal solenoid resistance. The resistance between pins 5 and 4, between 5 and 9, and between pins 5 and 10 will be twice normal solenoid resistance. Refer to Solenoid Resistance chart for these values. Were any wire-to-wire shorts found? | | Go to Step 7
Go to Step 10 | |
| 7 | 1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts or shorts-to-ground. Were any wire-to-wire shorts found? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 8
Go to Step 9 | |
| 8 | Repair or Replace the internal wiring harness. Is the repair complete? | | Go to Step 11 | |
| 9 | Replace PCS2. Is the replacement complete? | | Go to Step 11 | |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions. Did the DTC return? | | Begin the diagnosis again.
Go to Step 1 | System OK |
Circuit Description

Pressure Control Solenoid 3 (PCS3) is a normally closed (N/C) solenoid used to apply the C5 clutch in reverse, neutral and first, and to apply the C3 clutch in third and fifth ranges. The TCM commands the solenoid ON to produce hydraulic pressure in the clutch apply circuit. When PCS3 is commanded OFF, the clutch pressure is released.

The TCM sends control current to PCS3 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS3 by switching PCS3 Low Side Driver (LSD) ON and OFF. Wire 133 completes the circuit between PCS3 and its LSD. DTC P0968 indicates that the TCM has detected an open condition in PCS3 electrical circuit. The open condition may exist in the high side (wire 171) or low side (wire 133).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0968 is set when the TCM detects an open circuit on the PCS3 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0968 Pressure Control Solenoid 3 (PCS3) Control Circuit Open

Actions Taken When the DTC Sets

When DTC P0968 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P0968 indicates an open in the electrical circuit for the PCS3 solenoid. In addition to PCS3, HSD2 also supplies power to solenoids PCS1, PCS2, and SS1. If DTC P0968 is accompanied by DTC P2727 (PCS1 open circuit) and/or DTC P0964 (PCS2 open circuit), the open is most likely in the high side of the circuit.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests the OEM harness for an excessive voltage drop caused by an open condition in either wire 171 or wire 133 of the OEM chassis harness.
6. This step tests for an open condition in the transmission internal harness.
7. This step tests for the proper PCS3 resistance.
DTC P0968 Pressure Control Solenoid 3 (PCS3) Control Circuit Open

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem. Go to Step 11</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Monitor ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the voltage within the specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine and test drive the vehicle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC is intended to detect an open condition in the PCS3 electrical circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P0968 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td></td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install J 47279 Transmission Breakout between the OEM and transmission 20-way connectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Turn ignition ON, leave engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command PCS3 ON.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Determine the voltage drop in the high side of the PCS3 circuit as follows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47275-1 TCM Overlay, measure voltage between pin 71 and an isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47279-1 Transmission Overlay, measure voltage between pin 6 and isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Subtract the two voltage measurements to obtain the voltage drop in the circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Determine the voltage drop in the low side of the PCS3 circuit as follows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47275-1 TCM Overlay, measure voltage between pin 33 and an isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47279-1 Transmission Overlay, measure voltage between pin 9 and isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Subtract the two voltage measurements to obtain the voltage drop in the circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did either high-side or low-side voltage drop exceed 0.5VDC?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P0968 Pressure Control Solenoid 3 (PCS3) Control Circuit Open (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | **NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.**
 Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
 Is the repair complete? | Go to Step 11 | | |
| 6 | 1. Turn OFF the ignition.
 2. Disconnect the OEM 20-way connector from J 47279 Transmission Breakout. Leave the transmission 20-way connector connected to the breakout.
 3. Using a DVOM, measure the resistance between pin 6 and pin 9 of the transmission 20-way connector.
 Is the resistance within the specified value? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 10 | Go to Step 7 |
| 7 | 1. Remove the hydraulic control module assembly.
 2. Disconnect PCS3 from the internal wiring harness.
 3. Using a DVOM, measure PCS3 resistance at pins A and B.
 Is resistance within the specified values? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness.
 Is the replacement complete? | Go to Step 11 | | |
| 9 | Replace PCS3.
 Is the replacement complete? | Go to Step 11 | | |
| 10 | **NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.**
 Refer to TCM diagnostic procedure, Section 3–6.
 Is Section 3–6 complete? | Go to Step 11 | | |
| 11 | In order to verify your repair:
 1. Clear the DTC.
 2. Drive the vehicle under normal operating conditions.
 Did the DTC return? | Begin the diagnosis again.
 Go to Step 1 | System OK | | |
DTC P0970 Pressure Control Solenoid 3 (PCS3) Control Circuit Low

Circuit Description

Pressure Control Solenoid 3 (PCS3) is a normally closed (N/C) solenoid used to apply the C5 clutch in reverse, neutral and first; and to apply the C3 clutch in third and fifth ranges. The TCM commands the solenoid ON to produce hydraulic pressure in the clutch apply circuit. When PCS3 is commanded OFF, the clutch pressure is released.

The TCM sends control current to PCS3 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS3 by switching PCS3 Low Side Driver (LSD) ON and OFF. Wire 133 completes the circuit between PCS3 and its LSD. DTC P0970 indicates that the TCM has detected a short-to-ground condition in the low side of PCS electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0970 is set when the TCM detects a short-to-ground in the PCS3 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0970 Pressure Control Solenoid 3 (PCS3) Control Circuit Low

Actions Taken When the DTC Sets

When DTC P0970 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOCTM For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P0970 indicates a short-to-ground in the electrical circuit for the PCS3 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOCTM For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 133.
6. This step tests for the wire-to-wire shorts or a short-to-ground in the internal transmission harness.

DTC P0970 Pressure Control Solenoid 3 (PCS3) Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem. Go to Step 11 |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect a short-to-ground condition in the PCS3 electrical circuit.
Did DTC P0970 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | **NOTE: Review Section 4—Wire Test Procedures before performing steps.**
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM-side disconnected.
4. Disconnect the transmission 20-way connector.
5. Inspect the routing of wire 133 in the chassis harness between the TCM and the transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 33 and all other pins in the 80-way connector, and shorts-to-ground between pin 33 and chassis ground.
Were any wire-to-wire shorts or shorts-to-ground found? | | Go to Step 5 | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0970 Pressure Control Solenoid 3 (PCS3) Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 9 and all other pins in the 20-way connector, and shorts-to-ground between pin 9 and chassis ground. **NOTE:** The resistance value between pins 9 and 6 will read normal solenoid resistance. The resistance value between pins 9 and 4, between pins 9 and 5, and between pins 9 and 10 will be twice normal solenoid resistance. Refer to Solenoid Resistance chart for these values. Were wire-to-wire or shorts-to-ground found? | Go to Step 7 | Go to Step 10 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts or shorts-to-ground. Were wire-to-wire or shorts-to-ground found? | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness. Is the replacement complete? | Go to Step 11 | |
| 9 | Replace PCS3. Is the replacement complete? | Go to Step 11 | |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions. Did the DTC return? | begin the diagnosis again. Go to Step 1 | System OK |
DTC P0971 Pressure Control Solenoid 3 (PCS3) Control Circuit High

Circuit Description

Pressure Control Solenoid 3 (PCS3) is a normally closed (N/C) solenoid used to apply the C5 clutch in reverse, neutral and first and to apply the C3 clutch in third and fifth ranges. The TCM commands the solenoid ON to produce hydraulic pressure in the clutch apply circuit. When PCS3 is commanded OFF, the clutch pressure is released.

The TCM sends control current to PCS3 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS3 by switching PCS3 Low Side Driver (LSD) ON and OFF. Wire 133 completes the circuit between PCS3 and its LSD. DTC P0971 indicates that the TCM has detected a short-to-battery condition in the low side of PCS electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0971 is set when the TCM detects a short-to-battery in the PCS3 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0971 Pressure Control Solenoid 3 (PCS3) Control Circuit High

Actions Taken When the DTC Sets
When DTC P0971 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P0971 indicates a short-to-battery in the electrical circuit for the PCS3 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts between wire 133 and other wires in the OEM chassis harness.
6. This step tests for the wire-to-wire shorts in the transmission internal harness.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem. Go to Step 11 |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.). | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | NOTE: Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the transmission 20-way connector.
5. Inspect the routing of wires 177 and 133 in the chassis harness between the TCM and the transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 33 and all other pins in the 80-way connector, and shorts-to-ground between pin 33 and chassis ground.
Were any wire-to-wire shorts found? | | Go to Step 5 | Go to Step 6 |
Diagnostic Trouble Codes (DTC)

DTC P0971 Pressure Control Solenoid 3 (PCS3) Control Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 9 and all other pins in the 20-way connector.
NOTE: The resistance value between pins 9 and 6 will read normal solenoid resistance. The resistance value between pins 9 and 4, between pins 9 and 5, and between pins 9 and 10 will be twice normal solenoid resistance. Refer to Solenoid Resistance chart for these values.
Were wire-to-wire shorts found? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 7 | Go to Step 10 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts.
Were wire-to-wire shorts found? | | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness.
Is the replacement complete? | | Go to Step 11 |
| 9 | Replace or repair PCS3.
Is the replacement complete? | | Go to Step 11 |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
Did the DTC return? | Begin the diagnosis again.
Go to Step 1 | System OK |
DTC P0973 Shift Solenoid 1 (SS1) Control Circuit Low

Circuit Description

Shift Solenoid 1 (SS1) is a normally closed (N/C) solenoid used to properly position the C1 and C2 latch valves in forward ranges. The TCM commands the solenoid ON to supply control main pressure to the C1 and C2 latch valves. When solenoid SS1 is commanded OFF, control main pressure is relieved from the C1 and C2 latch valves.

The TCM sends control current to solenoid SS1 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM energizes SS1 by switching the solenoid’s Low Side Driver (LSD) ON. Wire 151 completes the circuit between SS1 and its LSD. DTC P0973 indicates that the TCM has detected a short-to-ground or open circuit condition in the low side of SS1 electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0973 is set when the TCM detects a short-to-ground or open condition in the SS1 return circuit for more than 125 milliseconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0973 Shift Solenoid 1 (SS1) Control Circuit Low

Actions Taken When the DTC Sets
When DTC P0973 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P0973 indicates a short-to-ground or an open condition in the electrical circuit for the SS1 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF. NOTE: A 1000 hertz test pulse may be present in the SS1 circuit.
Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for the OEM harness for an excessive voltage drop caused by an open condition in either wire 171 or wire 151 of the OEM chassis harness.
5. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 151.
7. This step tests for wire-to-wire shorts or a short-to-ground or an open in the internal transmission harness.

DTC P0973 Shift Solenoid 1 (SS1) Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem.
Go to Step 11 |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.). | | Go to Step 4 | Go to Diagnostic Aids |

NOTE: This DTC is intended to detect a short-to-ground or open condition in the SS1 electrical circuit.

Did DTC P0973 return?
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0973 Shift Solenoid 1 (SS1) Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Turn ignition OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install J 47279 Transmission Breakout between the OEM and transmission 20-way connectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Turn ignition ON, leave engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Using Allison DOC™ For PC–Service Tool enter Solenoid Test mode and command solenoid SS1 ON.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Determine the voltage drop in the high side of the SS1 circuit as follows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47275-1 TCM Overlay, measure voltage between pin 71 and an isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47279-1 Transmission Overlay, measure voltage between pin 6 and ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Subtract the two voltage measurements to obtain the voltage drop in the circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Determine the voltage drop in the low side of the SS1 circuit as follows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47275-1 TCM Overlay, measure voltage between pin 51 and an isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47279-1 Transmission Overlay, measure voltage between pin 10 and ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Subtract the two voltage measurements to obtain the voltage drop in the circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did either high-side or low-side voltage drop exceed 0.5 VDC?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Disconnect the TCM 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Disconnect the transmission 20-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Inspect the routing of wire 151 in the chassis harness between the TCM and the transmission connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 51 and all other pins in the 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Were any wire-to-wire shorts or shorts-to-ground found?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0973 Shift Solenoid 1 (SS1) Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 12</td>
<td></td>
</tr>
</tbody>
</table>
| 7 | 1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 10 and all other pins in the 20-way connector.
4. Test for an open between pins 6 and 10. **NOTE:** The resistance value between pins 10 and 6 will read normal solenoid resistance. The resistance value between pins 10 and 4, between pins 10 and 5, and between pins 10 and 9 will be twice normal solenoid resistance. Refer to Solenoid Resistance chart for these values. Were any wiring defects found? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 8 | Go to Step 11 |
| 8 | 1. Remove the hydraulic control module assembly.
2. Disconnect SS1 from the internal harness.
3. Inspect the internal harness for wire-to-wire shorts. Were any wiring defects found? | | Go to Step 8 | Go to Step 10 |
| 9 | Replace the internal wiring harness. Is the replacement complete? | | Go to Step 12 | |
| 10 | Replace SS1. Is the replacement complete? | | Go to Step 12 | |
| 11 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | | Go to Step 12 | |
| 12 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions. Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
Circuit Description

Shift Solenoid 1 (SS1) is a normally closed (N/C) solenoid used to properly position the C1 and C2 logic latch valves in forward ranges. The TCM commands the solenoid ON to supply control main pressure to the C1 and C2 logic latch valves. When SS1 is commanded OFF, control main pressure is relieved from the C1 and C2 latch valves.

The TCM sends control current to SS1 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM energizes SS1 by switching the solenoid’s Low Side Driver (LSD) ON. Wire 151 completes the circuit between SS1 and its LSD. DTC P0974 indicates that the TCM has detected a short-to-battery condition in the low side of SS1 electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0974 is set when the TCM detects a short-to-battery in the SS1 return circuit for more than 125 milliseconds.
DTC P0974 Shift Solenoid 1 (SS1) Control Circuit High

Actions Taken When the DTC Sets

When DTC P0974 is active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P0974 indicates a short-to-battery in the electrical circuit for the SS1 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF. **Note: A 1000 hertz test pulse may be present in the SS1 solenoid circuit.**
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts between wire 151 and other wires in the OEM chassis harness.
6. This step tests for the wire-to-wire shorts in the transmission internal harness.

DTC P0974 Shift Solenoid 1 (SS1) Control Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem. Go to Step 11</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Monitor ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the voltage within the specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine and test drive the vehicle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC is intended to detect a short-to-battery condition in the SS1 electrical circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P0974 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td></td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Disconnect the TCM 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Disconnect the transmission 20-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Inspect the routing of wire 171 and wire 151 in the chassis harness between the TCM and the transmission connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 51 and all other pins in the 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Were any wire-to-wire shorts found?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P0974 Shift Solenoid 1 (SS1) Control Circuit High *(cont'd)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using DVOM, test for wire-to-wire shorts between pin 10 and all other pins in the 20-way connector.
NOTE: The resistance value between pins 10 and 6 will read normal solenoid resistance. The resistance value between pins 10 and 4, between pins 10 and 5, and between pins 10 and 9 will be twice normal solenoid resistance. Refer to Solenoid Resistance chart for these values.
Were any wire-to-wire shorts found? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 7 | Go to Step 10 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts.
Were any wire-to-wire shorts found? | Go to Step 8 | Go to Step 9 |
| 8 | Repair or replace the internal wiring harness.
Is the repair complete? | Go to Step 11 | | |
| 9 | Replace SS1.
Is the replacement complete? | Go to Step 11 | | |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 11 | | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK | |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0975 Shift Solenoid 2 (SS2) Control Circuit Open

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TRANSMISSION

TCM

V BATTERY

RTDR OR DIFF LOCK (T-CASE)

HSD3

PCS5

RTDR ACCUM

HSD3

SS2

B

A

WIRE 131

WIRE 119

WIRE 137

WIRE 119

WIRE 131

WIRE 131

WIRE 115
Circuit Description

- Shift Solenoid 2 (SS2) is a normally closed (N/C) solenoid used to either activate:
 - The retarder accumulator air solenoid (retarder models)
 - The C6 enable solenoid (7-speed models).
- The TCM commands the solenoid ON to supply control main pressure to SS2. When SS2 is commanded OFF, the retarder accumulator air solenoid closes in retarder units or the C6 enable valve closes in 7-speed transmissions.
- The TCM sends control current to SS2 from High Side Driver 3 (HSD3) via wire 131. HSD3 is continuously ON unless the TCM detects a fault condition. The TCM energizes SS2 by switching the solenoid’s Low Side Driver (LSD) ON. Wire 119 completes the circuit between SS2 and its LSD. DTC P0975 indicates that the TCM has detected an open condition in SS2 electrical circuit. The open condition may exist in the high side (wire 131) or low side (wire 119).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0975 is set when the TCM detects an open circuit on the SS2 return circuit for more than 2 seconds.

Actions Taken When the DTC Sets

- When DTC P0975 is active, the following will occur:
 - The **CHECK TRANS** light illuminates.
 - DTC is stored in TCM history.
 - For 7-speed transmissions, the TCM allows operation in second range through sixth range, and neutral and reverse.
 - For retarder equipped transmissions, the retarder accumulator is disabled.

Conditions for Clearing the DTC/CHECK TRANS light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P0975 indicates an open in the electrical circuit for the SS2 solenoid. In addition to SS2, HSD3 also supplies power to solenoids TCC and PCS5. If DTC P0975 is accompanied by DTC P2736 and P2761, the open is most likely in the high side of the circuit.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0975 Shift Solenoid 2 (SS2) Control Circuit Open

- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests the OEM harness for an excessive voltage drop caused by an open condition in either wire 131 or wire 115 of the OEM chassis harness.
6. This step tests for an open condition in the transmission internal harness or retarder accumulator solenoid harness.
7. This step tests for the proper SS2 resistance (7-speed models only).

DTC P0975 Shift Solenoid 2 (SS2) Control Circuit Open

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem.
Go to Step 11 |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect an open condition in the SS2 electrical circuit.
Did DTC P0975 return? | | Go to Step 4 | Go to Diagnostic Aids |
DTC P0975 Shift Solenoid 2 (SS2) Control Circuit Open (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 4 | **NOTE: Review Section 4—Wire Test Procedures before performing steps.**
1. Turn OFF the ignition.
2. Install the J 47275 TCM Breakout between the OEM and TCM 80-way connector.
3. Install J 47279 Transmission Breakout between the OEM and transmission 20-way connectors, and OEM and retarder accumulator solenoid connector, if applicable.
4. Turn ON the ignition, leave engine OFF.
5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command SS2 ON.
6. Determine the voltage drop in the high side of the SS2 circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 31 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 11 (7-speed) or pin RTDR ACCUM-B (retarder) and an isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.
7. Determine the voltage drop in the low side of the SS2 circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 19 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 17 (7-speed) or pin RTDR ACCUM-A (retarder) and an isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.
 NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness.
 Did either high-side or low-side voltage drop exceed 0.5VDC? | Go to Step 5 | Go to Step 6 |
| 5 | **NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.**
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | Go to Step 11 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0975 Shift Solenoid 2 (SS2) Control Circuit Open (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | For 7-speed transmissions:
1. Turn OFF the ignition.
2. Disconnect the OEM 20-way connector from J 47279 Transmission Breakout. Leave the transmission-side connected.
3. Using a DVOM, measure the resistance between pin 11 and pin 17 of the transmission 20-way connector.
For retarder units:
1. Disconnect the retarder accumulator SS2 connector.
2. Using a DVOM, measure the resistance between pins A and B of the retarder accumulator solenoid.
Is the resistance within the specified value? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 10 | 7-speed transmissions, go to Step 7.
Retarder equipped transmissions, go to Step 9. |
| 7 | **NOTE: This step applies to 7-speed models only.** For retarder models, go to Step 9.
1. Remove the hydraulic control module assembly.
2. Remove C6 Enable SS2.
3. Using a DVOM, measure resistance of SS2 between pins A and B.
Is the resistance within the specified value? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness.
Is the replacement complete? | | Go to Step 11 |
| 9 | Replace SS2.
Is the replacement complete? | | Go to Step 11 |
| 10 | **NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.**
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
Did the DTC return? | | **Begin the diagnosis again.**
Go to Step 1 | **System OK** |
Circuit Description
Shift Solenoid 2 (SS2) is a normally closed (N/C) solenoid used to either activate the retarder accumulator air solenoid (retarder models) or the C6 enable solenoid (7-speed models).

The TCM sends control current to SS2 from High Side Driver 3 (HSD3) via wire 131. HSD3 is continuously ON unless the TCM detects a fault condition. The TCM energizes SS2 by switching the solenoid’s Low Side Driver (LSD) ON. Wire 119 completes the circuit between SS2 and its LSD. DTC P0976 indicates that the TCM has detected a short-to-ground condition in the low side of SS2 electrical circuit.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0976 Shift Solenoid 2 (SS2) Control Circuit Low

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P0976 is set when the TCM detects a short-to-ground in the SS2 return circuit for more than 125 milliseconds.

Actions Taken When the DTC Sets

When DTC P0976 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM allows operation in second range through sixth range and in Neutral and Reverse.
- The TCM inhibits TCC operation.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P0976 indicates a short-to-ground in the electrical circuit for the SS2 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:

1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the Hertz button once.
3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 119.
6. This step tests for the wire-to-wire shorts or a short-to-ground in the internal transmission harness.

DTC P0976 Shift Solenoid 2 (SS2) Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning The Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Monitor ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem. Go to Step 11</td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC. 2. Start the engine and test drive the vehicle. 3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
</tbody>
</table>

NOTE: This DTC is intended to detect a short-to-ground condition in the SS2 electrical circuit.

Did DTC P0976 return?
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0976 Shift Solenoid 2 (SS2) Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the transmission 20-way connector.
5. Inspect the routing of wire 119 in the chassis harness between the TCM and the transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 19 and all other pins in the 80-way connector, and shorts-to-ground between pin 19 and chassis ground. Were any wire-to-wire shorts or shorts-to-ground wiring defects found?</td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0976 Shift Solenoid 2 (SS2) Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | For 7-speed transmissions:
1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 17 and all other pins in the 20-way connector.
\textit{NOTE: The resistance value between pins 17 and 11 will read normal solenoid resistance. The resistance value between 17 and 12 will be twice normal solenoid resistance. Refer to Solenoid Resistance chart for these values.}
4. Test for shorts-to-ground between pin 17 and chassis ground.
For retarder units:
1. Turn OFF the ignition.
2. Disconnect the retarder accumulator solenoid.
3. Using a DVOM, test for shorts-to-ground between pin A of SS2 and chassis ground.
\textit{NOTE: The resistance value of SS2 (retarder accumulator) will be normal solenoid resistance. Refer to Solenoid Resistance chart for these values.}
Were any wire-to-wire shorts or shorts-to-ground found? | 7-speed transmissions go to Step 7.
Retarder equipped transmission go to Step 9. | Go to Step 10 |
| 7 | \textit{NOTE: This step applies to 7-speed models only.}
For retarder models skip to Step 9.
1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts or shorts-to-ground.
Were any wire-to-wire or shorts-to-ground found? | Go to Step 8 | Go to Step 9 |
| 8 | Repair or replace the internal wiring harness.
Is the repair complete? | Go to Step 11 |
| 9 | Replace SS2.
Is the replacement complete? | Go to Step 11 |
| 10 | \textit{NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.}
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
Did the DTC return? | \text{Begin the diagnosis again. Go to Step 1} | \text{System OK} |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0977 Shift Solenoid 2 (SS2) Control Circuit High

Circuit Description

Shift Solenoid 2 (SS2) is a normally closed (N/C) solenoid used to either activate the retarder accumulator air solenoid (retarder models) or the C6 enable solenoid (7-speed models). The TCM commands the solenoid ON to supply control main pressure to SS2. When SS2 is commanded OFF, the retarder accumulator air solenoid closes in retarder units or the C6 enable valve closes in 7-speed transmissions.

The TCM sends control current to SS2 from High Side Driver 3 (HSD3) via wire 131. HSD3 is continuously ON unless the TCM detects a fault condition. The TCM energizes SS2 by switching the solenoid’s Low Side Driver (LSD) ON. Wire 119 completes the circuit between SS2 and its LSD. DTC P0977 indicates that the TCM has detected a short-to-battery condition in the low side of SS2 electrical circuit.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0977 Shift Solenoid 2 (SS2) Control Circuit High

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC
DTC P0977 is set when the TCM detects a short-to-battery in the SS2 return circuit for more than 125 milliseconds.

Actions Taken When the DTC Sets
When DTC P0977 is active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM allows operation in second range through sixth range and in Neutral and Reverse.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P0977 indicates a short-to-battery in the electrical circuit for the SS2 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts between wire 119 and other wires in the OEM chassis harness.
6. This step tests for the wire-to-wire shorts in the transmission internal harness.
10. This step tests for proper operation of the SS2 Low Side Driver.

DTC P0977 Shift Solenoid 2 (SS2) Control Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem.
Go to Step 11 |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.). | | Go to Step 4 | Go to Diagnostic Aids |

NOTE: This DTC is intended to detect a short-to-battery condition in the SS2 electrical circuit.

Did DTC P0977 return?
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0977 Shift Solenoid 2 (SS2) Control Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps. 1. Turn OFF the ignition. 2. Disconnect the TCM 80-way connector. 3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected. 4. Disconnect the transmission 20-way connector. 5. Inspect the routing of wires 131 and 119 in the chassis harness between the TCM and the transmission connector. 6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 19 and all other pins in the 80-way connector. Were any wire-to-wire shorts found?</td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring.</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>For 7-speed transmissions: 1. Turn OFF the ignition. 2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected. 3. Using a digital multimeter (DVOM), test for wire-to-wire shorts between pin 17 and all other pins in the 20-way connector. NOTE: The resistance value between pins 17 and 11 will read normal solenoid resistance. The resistance value between pins 17 and 12 will be twice normal solenoid resistance. Refer to Solenoid Resistance chart for these values. For retarder equipped units: 1. Turn OFF the ignition. 2. Disconnect the retarder accumulator solenoid. 3. Using a digital multimeter (DVOM), test for wire-to-wire shorts between pin A and pin B of SS2. NOTE: The resistance value between pins A and B of SS2 (retarder accumulator) will be normal solenoid resistance. Refer to Solenoid Resistance chart for this value.</td>
<td>7-speed transmissions go to Step 7. Retarder equipped transmission go to Step 9.</td>
<td>Go to Step 10</td>
<td></td>
</tr>
</tbody>
</table>

7-speed transmissions go to Step 7. Retarder equipped transmission go to Step 9.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0977 Shift Solenoid 2 (SS2) Control Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 7 | **NOTE:** This step applies to 7-speed models only. Retarder models skip to Step 9.
 1. Remove the hydraulic control module assembly.
 2. Inspect the internal harness for wire-to-wire shorts.
 Were any wire-to-wire shorts found? | | Go to Step 8 | Go to Step 9 |
| 8 | Repair or replace the internal wiring harness.
 Is the repair complete? | | Go to Step 11 | |
| 9 | Replace SS2.
 Is the replacement complete? | | Go to Step 11 | |
| 10 | **NOTE:** In most cases, the TCM is not at fault.
 Investigate thoroughly before replacing the TCM.
 Refer to TCM diagnostic procedure, Section 3–6.
 Is Section 3–6 complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
 1. Clear the DTC.
 2. Drive the vehicle under normal operating conditions.
 Did the DTC return? | | | System OK |

DTC P0977 Shift Solenoid 2 (SS2) Control Circuit High

- **Step 7**: For 7-speed models, remove the hydraulic control module assembly and inspect the internal harness for wire-to-wire shorts. If any shorts are found, proceed to Step 8. If not, go to Step 9.
- **Step 8**: Repair or replace the internal wiring harness, and check if the repair is complete. If not, proceed to Step 11.
- **Step 9**: Replace SS2, and check if the replacement is complete. If not, go to Step 11.
- **Step 10**: Note: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6, and check if the procedure is complete. If not, go to Step 11.
- **Step 11**: To verify the repair, clear the DTC, drive the vehicle under normal conditions, and check if the DTC returns. If it does, begin the diagnosis again. If it doesn’t, the system is considered OK.
DTC P0989 Retarder Pressure Sensor Failed Low

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION ANALOG RETURN

TCM

* NORMALLY CLOSED

Copyright © 2005 General Motors Corp.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0989 Retarder Pressure Sensor Failed Low

Circuit Description
The Transmission Control Module (TCM) can be calibrated to control retarder capacity in response to signals from an integral vehicle electronic braking system (EBS). However, the EBS controller requires accurate information about the state of the retarder. Because retarder capacity is proportional to retarder charge pressure, the TCM uses a pressure transducer located in the retarder cavity to measure the precise retarder capacity when the retarder is in operation. The TCM is connected to the pressure transducer by:

- a reference voltage wire,
- retarder request signal wire, and
- analog ground wire.

When the TCM commands more retardation, pressure in the retarder charge pressure circuit increases resulting in a larger voltage signal from the retarder pressure transducer.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
- Electronic Braking is enabled in the TCM calibration.

Conditions for Setting the DTC
The TCM detects retarder pressure voltage signal equal to 0V for 10 seconds.

Actions Taken When the DTC Sets
When DTC P0989 is active, the following conditions will occur:

- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- Inspect the wiring for poor electrical connections at the TCM and retarder pressure sensor. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle and operate the retarder in order to experience a fault.
DIAGNOSTIC TROUBLE CODES (DTC)

- DTC P0989 can be caused by an open or short-to-ground in either the 5V reference wire 112 or retarder pressure sensor signal wire 144. The retarder pressure sensor shares a common 5V reference voltage wire 112 with the optional transmission oil level sensor (OLS) and retarder request sensor. An open or short-to-ground in the common 5V reference causes a “sensor failed low” code for the other devices as well. An open or short-to-ground on wire 144 will cause DTC P0989 only.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for active diagnostic codes.
3. This step tests for wire-to-wire shorts, opens, or shorts-to-ground on wires 112 and 144.
6. This step verifies the TCM is supplying proper 5V reference voltage.

DTC P0989 Retarder Pressure Sensor Failed Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Clear the DTC. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that the retarder pressure sensor signal is at 0V for 10 seconds. It may also indicate an open or short-to-ground in either the 5V reference wire 112 or retarder pressure sensor signal wire 144. Did DTC P0989 return? | | Go to Step 3 | Go to Diagnostic Aids |
| 3 | 1. Turn OFF the ignition. 2. Inspect the routing of the 5V reference wire 112, signal wire 144, and analog return wire 158 between the TCM and the retarder pressure sensor. 3. Disconnect the 80-way connector from the TCM. 4. Install the OEM-side of the 80-way connector to J 47275 TCM Breakout. Leave the TCM disconnected. 5. Disconnect the retarder pressure sensor from the OEM wiring harness. 6. Disconnect the transmission 20-way connector and RMR connector, if installed. 7. Test for wire-to-wire shorts, opens and shorts-to-ground on wires 112 and 144. Was chafing or wire damage found? | | Go to Step 4 | Go to Step 5 |
Diagnostic Trouble Codes (DTC)

DTC P0989 Retarder Pressure Sensor Failed Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | 1. Remove J 47275 TCM Breakout and reconnect the TCM and OEM 80-way connector to each other.
2. Disconnect the retarder pressure sensor from the OEM harness, if not disconnected in Step 3 above.
3. Reconnect the transmission 20-way connector and RMR connector, if installed.
4. Turn ON the ignition. Leave the engine OFF.
5. Using a DVOM, measure the voltage between pin B (5V reference wire 112) and pin A (analog return wire 158) at the OEM harness retarder pressure sensor connector. Is the voltage within the specified values? | 4.75–5.0V | Go to Step 6 | Go to Step 7 |
| 6 | Replace the retarder pressure sensor. Is the replacement complete | | Go to Step 8 | |
| 7 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | | Go to Step 8 | |
| 8 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions.
3. Using Allison DOC™ For PC–Service Tool, monitor retarder pressure. Did the DTC return? | | | System OK |

System OK
DTC P0990 Retarder Pressure Sensor Failed High

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

ANALOG RETURN

OIL LEVEL

HALL EFFECT

SUMP TEMP

PS1

NC

TCM

RETARDER REQUEST SIGNAL

5V SENSOR VOLTAGE

THROTTLE POSITION OR RTDR PRESSURE SIGNAL ANALOG RETURN

RETARDER TEMP

ENGINE TEMP

ENGINE WATER TEMP

OIL LEVEL SENSOR

SUMP TEMP

PS1 DIAGNOSTIC PRESSURE SWITCH

* NORMALLY CLOSED
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P0990 Retarder Pressure Sensor Failed High

Circuit Description
The Transmission Control Module (TCM) can be calibrated to control retarder capacity in response to signals from an integral vehicle electronic braking system (EBS). However, the EBS controller requires accurate information about the state of the retarder. Because retarder capacity is proportional to retarder charge pressure, the TCM uses a pressure transducer located in the retarder cavity to measure the precise retarder capacity when the retarder is in operation. The TCM is connected to the pressure transducer by:

• a reference voltage wire,
• retarder pressure signal wire, and
• analog ground wire.

When the TCM commands more retardation, pressure in the retarder charge pressure circuit increases resulting in a larger voltage signal from the retarder pressure transducer.

Conditions for Running the DTC

• The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
• Engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
• Electronic Braking is enabled in the TCM calibration.

Conditions for Setting the DTC
The TCM detects retarder pressure voltage signal greater than or equal to 5V for 10 seconds.

Actions Taken When the DTC Sets
When DTC P0990 is active, the following conditions will occur:

• The TCM does not illuminate the CHECK TRANS light.
• DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• Inspect the wiring for poor electrical connections at the TCM and retarder pressure sensor. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
• You may have to drive the vehicle and operate the retarder in order to experience a fault.
DIAGNOSTIC TROUBLE CODES (DTC)

- DTC P0990 can be caused by a short-to-battery in the 5V reference wire 112 or retarder pressure sensor wire 144. DTC P0990 can also be caused by an open in analog return wire 158. The retarder pressure sensor shares a common 5V reference voltage wire 112 with the optional transmission oil level sensor (OLS) and retarder request sensor. A short-to-battery in the 5V reference wire 112 or open in analog return wire 158 causes a “sensor failed high” code for these other devices as well. A short-to-battery in retarder pressure sensor signal wire 144 will produce DTC P0990 only.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

1. This step tests for active diagnostic codes.
2. This step tests for wire-to-wire shorts or shorts-to-battery on wires 112 and 144, and opens in wire 158.
6. This step verifies the TCM is supplying proper 5V reference voltage.

DTC P0990 Retarder Pressure Sensor Failed High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Clear the DTC. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that the retarder pressure sensor signal is greater than or equal to 5V for 10 seconds. It may also indicate a short-to-battery in either the 5V reference wire 112 or retarder pressure sensor signal wire 144, or an open in analog return wire 158.
Did DTC P0990 return? | | Go to Step 3 | Go to Diagnostic Aids |
| 3 | 1. Turn OFF the ignition.
2. Inspect the routing of the 5V reference wire 112, signal wire 144, and analog return wire 158 between the TCM and the retarder pressure sensor.
3. Disconnect the 80-way connector from the TCM.
4. Install the OEM-side of the 80-way connector to J 47275 TCM Breakout. Leave the TCM-side disconnected.
5. Disconnect the retarder pressure sensor from the OEM wiring harness.
6. Disconnect the transmission 20-way connector and RMR connector, if installed.
7. Test for wire-to-wire shorts and shorts-to-battery in wires 112 and 144.
8. Test for an open condition in wire 158.
Was chafing or wire damage found? | | Go to Step 4 | Go to Step 5 |
DIAGONSTIC TROUBLE CODES (DTC)

DTC P0990 Retarder Pressure Sensor Failed High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td></td>
<td>Go to Step 8</td>
</tr>
<tr>
<td>5</td>
<td>1. Remove J 47275 TCM Breakout and reconnect the TCM and OEM 80-way connectors to each other. 2. Disconnect the retarder pressure sensor from the OEM harness, if not disconnected in Step 3. 3. Reconnect the transmission 20-way connector and RMR connector, if installed. 4. Turn ON the ignition. 5. Using a DVOM, measure the voltage between pin B (5V reference wire 112) and pin A (analog return wire 158) at the OEM harness retarder pressure sensor connector. Is the voltage within the specified values?</td>
<td>4.75–5.0V</td>
<td>Go to Step 6</td>
<td>Go to Step 7</td>
</tr>
<tr>
<td>6</td>
<td>Replace the retarder pressure sensor. Is the replacement complete?</td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under normal operating conditions. 3. Using Allison DOC™ For PC–Service Tool, monitor retarder pressure. Did the DTC return?</td>
<td></td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P1739 Incorrect Low Gear Ratio

Refer to Low Range Hydraulic Schematic

Circuit Description

The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to determine the current commanded steady state gear ratio. The TCM then compares the known gear ratio to the calculated gear ratio for the current range.

Conditions for Running the DTC

- Hydraulic system is pressurized.
- No shift in progress.
- Hydraulic default condition not present.
- Output speed is above 200 rpm.
- Engine initialization or shutdown is not in progress.

Conditions for Setting the DTC

DTC P1739 sets when the calculated low range ratio (steady state) differs from the known Low range ratio.

Actions Taken When the DTC Sets

When DTC P1739 is active, the following conditions will occur:

- The TCM commands second range and allows operation in second range through sixth range, and in neutral and reverse.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- You may have to clear the DTC and drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time, etc. This data can be useful in reproducing failures mode where DTC was set.
- Incorrect ratio codes typically indicate mechanical problems with specific clutches for range indicated, i.e. C3 and C6 (3000 7-speed model) or C1 and C6 (4000 7-speed model) for Low range.
- An incorrect ratio DTC may indicate a mechanically failed clutch control solenoid. Check the DTC information for the specific solenoid.
- Output speed or turbine speed tone wheel damage may cause erratic speed sensor input allowing this code to set.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for proper ignition voltage.
4. This step tests for proper match between calibration gear ratio and actual gear ratio.
5. This step tests speed sensor readings.
6. This step tests for clutch slippage in Low range.
7. This step tests for clutch pressure to range clutches.
8. This step tests for evidence of clutch failure.

DTC P1739 Incorrect Low Gear Ratio

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
</tbody>
</table>
| 3 | 1. Start the engine.
2. Record the DTC Failure Record data.
3. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified value? | 9–18V (12V TCM)
18–32V (24V TCM) | **Go to Step 4** | **Go to General Troubleshooting Section 8** |
| 4 | 1. Start the engine and drive the vehicle under normal operating conditions.
2. Using Allison DOCTM For PC–Service Tool, monitor turbine, engine, and output speed sensor readings. Is speed sensor data erratic or are dropouts in signal indicated? | Watch for erratic speed sensor signals | **Go to appropriate speed sensor DTC** | **Go to Step 5** |
DTC P1739 Incorrect Low Gear Ratio (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | **WARNING:** To help avoid injury or property damage caused by sudden and unexpected vehicle movement, do not start a stationary stall test until you do all of the following:
- Put the transmission in N (Neutral).
- Apply the parking brake and service brake.
- Chock the wheels and take any other steps necessary to prevent the vehicle from moving.
- Warn personnel to keep clear of the vehicle and its path.
CF | Refer to Diagnostic Aids | Go to Step 6 |
| | **CAUTION:** DO NOT conduct a stall test in Low. The torque produced in Low can damage the vehicle driveline or axle. | | | |
| 6 | Read and record Main, C6, C1 (4000 7-speed only) or C3 (3000 7-speed only) clutch pressures.
Are the pressure readings within specified values in Appendix B? | Refer to Main Clutch Pressure specifications in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.
Are there signs of a clutch failure? | | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the appropriate service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Ensure screen is not plugged.
4. Inspect for damaged gaskets and face seals.
Was a valve body problem found and repaired? | | Go to Step 11 | Go to Step 9 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P1739 Incorrect Low Gear Ratio (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 9 | Using pressure readings obtained in Step 6 above, replace the affected solenoid.
 - Incorrect C1 (4000 7-speed only) pressure—PCS1
 - Incorrect C3 (3000 7-speed only) pressure—PCS3
 - Incorrect C6 (Both) pressure—PCS6
Is the replacement complete? | Go to Step 11 | | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
 If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | Go to Step 11 | | |
| 11 | In order to verify your repair:
 1. Clear the DTC.
 2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine and output speed sensor readings.
 3. Drive the vehicle under normal operating conditions.
Did the DTC return? | Begin the diagnosis again.
 Go to Step 1 | System OK | | |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P1891 Throttle Position Sensor PWM Signal Low Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

TCM

* NORMALLY CLOSED

Copyright © 2005 General Motors Corp.

6–277
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P1891 Throttle Position Sensor PWM Signal Low Input

Circuit Description
The Transmission Control Module (TCM) can be calibrated to receive throttle information from a Pulse Width Modulation (PWM) signal.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
- The TCM has autodetected a PWM throttle source.

Conditions for Setting the DTC
The TCM detects PWM throttle signal less than 4.9 percent for 5 seconds.

Actions Taken When the DTC Sets
When DTC P1891 is active, the following conditions will occur:
- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.
- TCM uses default throttle values.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- The TCM detects the throttle source automatically during the initial series of engine starts. The TCM may have auto-detected the wrong throttle source type. Use the Allison DOC™ For PC–Service Tool to reset auto-detect or select the appropriate throttle source if PWM-type sensor is not being used.
- Inspect the wiring for poor electrical connections at the TCM and PWM throttle sensor. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle in order to experience a fault.
- Advanced troubleshooting—monitor frequency on pin 44 as throttle is increased from closed throttle to wide open throttle. If frequency does not vary, the signal is bad. Have the vehicle manufacturer replace the PWM device.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper ignition voltage.
3. This step tests for operation of the PWM throttle sensor.
4. This step tests for wire-to-wire shorts, shorts-to-ground, or an open on wire 144.
6. This step inspects for damage or corrosion to the TCM and engine control module connectors.

DTC P1891 Throttle Position Sensor PWM Signal Low Input

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Using Allison DOC™ For PC–Service Tool, measure ignition voltage. Is ignition voltage within the specified value?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>3</td>
<td>1. Operate the throttle while monitoring Allison DOC™ For PC–Service Tool. 2. Verify the throttle source is functioning correctly? Is the PWM signal OK?</td>
<td></td>
<td></td>
<td>Go to Step 4</td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition. 2. Disconnect the 80-way connector from the TCM. 3. Install the OEM-side of the J 47275 TCM Breakout. Leave the TCM disconnected. 4. Disconnect the PWM throttle sensor connector. 5. Using a DVOM at J 47275-1 TCM Overlay, test for opens, pin-to-pin shorts, or shorts-to-ground on wire 144. Were any wiring defects found?</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td></td>
<td>Go to Step 10</td>
</tr>
<tr>
<td>6</td>
<td>Inspect the TCM and Engine Control Module (ECM) connectors and terminals for damage and/or corrosion. Did you find a problem?</td>
<td></td>
<td></td>
<td>Go to Step 7</td>
</tr>
<tr>
<td>7</td>
<td>Repair and clean terminals if possible. Is the repair complete?</td>
<td></td>
<td></td>
<td>Go to Step 10</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Code (DTC)

DTC P1891 Throttle Position Sensor PWM Signal Low Input (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>NOTE: The vehicle OEM has responsibility for the PWM throttle sensor. PWM throttle sensor repairs performed by Allison Transmission distributors and dealers are not covered by Allison warranty. Coordinate with the vehicle OEM to troubleshoot and replace the PWM throttle sensor. Did a new PWM throttle sensor correct the problem?</td>
<td></td>
<td>Go to Step 10</td>
<td>Go to Step 9</td>
</tr>
<tr>
<td>9</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td>Go to Step 10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under normal operating conditions. 3. Using Allison DOC™ For PC–Service Tool, monitor throttle percentage. Did the DTC return?</td>
<td></td>
<td></td>
<td>Begin the diagnosis again. Go to Step 1</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P1892 Throttle Position Sensor PWM Signal High Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

ANALOG RETURN

OIL LEVEL

HALL EFFECT

SUMP TEMP

PS1

* NORMALLY CLOSED

TCM

RETARDER REQUEST SIGNAL

5V SENSOR VOLTAGE

THROTTLE POSITION OR RTDR PRESSURE SIGNAL ANALOG RETURN

RETARDER TEMP

ENGINE TEMP

ENGINE WATER TEMP

OIL LEVEL SENSOR

SUMP TEMP

PS1 DIAGNOSTIC PRESSURE SWITCH
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P1892 Throttle Position Sensor PWM Signal High Input

Circuit Description
The Transmission Control Module (TCM) can be calibrated to receive throttle information from a Pulse Width Modulation (PWM) signal.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
- The TCM has autodetected a PWM throttle source.

Conditions for Setting the DTC
The TCM detects PWM throttle signal greater than or equal to 95.1 percent for 5 seconds.

Actions Taken When the DTC Sets
When DTC P1892 is active, the following conditions will occur:
- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.
- TCM uses default throttle values.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- The TCM detects the throttle source automatically during the initial series of engine starts. The TCM may have auto-detected the wrong throttle source type. Use the Allison DOC™ For PC–Service Tool to reset auto-detect or select the appropriate throttle source if PWM-type sensor is not being used.
- Inspect the wiring for poor electrical connections at the TCM and PWM throttle sensor. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle in order to experience a fault.
- Advanced troubleshooting—monitor frequency on pin 44 as throttle is increased from closed throttle to wide open throttle. If frequency does not vary, the signal is bad. Have the vehicle manufacturer replace the PWM device.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper ignition voltage.
3. This step tests for operation of the PWM throttle sensor.
4. This step tests for wire-to-wire shorts, shorts-to-ground, or an open on wire 144.
6. This step inspects for damage or corrosion to the TCM and engine control module connectors.

<table>
<thead>
<tr>
<th>DTC P1892 Throttle Position Sensor PWM Signal High Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Start the engine.
 3. Record the failure records.
 4. Using Allison DOC™ For PC–Service Tool, measure ignition voltage.
 Is ignition voltage within the specified value? | 9–18V (12V TCM)
 18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem (refer to DTC P0882 and DTC P0883) |
| 3 | 1. Operate the throttle while monitoring Allison DOC™ For PC–Service Tool.
 2. Verify the throttle source is functioning correctly?
 Is the PWM signal OK? | | Go to Diagnostic Aids | Go to Step 4 |
| 4 | 1. Turn OFF the ignition.
 2. Disconnect the 80-way connector from the TCM.
 3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
 4. Disconnect the PWM throttle sensor connector.
 5. Using a DVOM at J 47275-1 TCM Overlay, test for opens, pin-to-pin shorts, or shorts-to-ground on wire 144.
 Were any wiring defects found? | | Go to Step 5 | Go to Step 6 |
| 5 | NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
 Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
 Is the repair complete? | | Go to Step 10 | |
| 6 | Inspect the TCM and Engine Control Module (ECM) connectors and terminals for damage and/or corrosion.
 Did you find a problem? | | Go to Step 7 | Go to Step 8 |
| 7 | Repair and clean terminals if possible.
 Is the repair complete? | | | Go to Step 10 |
Diagnostic Trouble Codes (DTC)

DTC P1892 Throttle Position Sensor PWM Signal High Input (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>NOTE: The vehicle OEM has responsibility for the PWM throttle sensor. PWM throttle sensor repairs performed by Allison Transmission distributors and dealers are not covered by Allison warranty. Coordinate with the vehicle OEM to troubleshoot and replace the PWM throttle sensor. Did a new PWM throttle sensor correct the problem?</td>
<td>Go to Step 10</td>
<td>Go to Step 10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td>Go to Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under normal operating conditions. 3. Using Allison DOC™ For PC–Service Tool, monitor throttle percentage. Did the DTC return?</td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>

Go to Page 8
DTC P2184 Engine Coolant Temperature Sensor Circuit Low Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TRANSMISSION

ANALOG RETURN

OIL LEVEL

HAL EFFECT

SUM TEMP

PS1

* NORMALLY CLOSED

TCM

RETARDER REQUEST SIGNAL

5V SENSOR VOLTAGE

THROTTLE POSITION OR RTDR PRESSURE SIGNAL

ANALOG RETURN

RETARDER TEMP

ENGINE TEMP

ENGINE WATER TEMP

OIL LEVEL SENSOR

SUM TEMP

PS1 DIAGNOSTIC PRESSURE SWITCH

WIRE 156

WIRE 112

WIRE 144

WIRE 158

WIRE 175

WIRE 135

WIRE 158

WIRE 112

WIRE 154

WIRE 177

WIRE 116

WIRE 16

WIRE 54

WIRE 77
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2184 Engine Coolant Temperature Sensor Circuit Low Input

Circuit Description
The Transmission Control Module (TCM) receives an input from an engine coolant temperature sensor. The TCM supplies a 5V reference voltage signal into a voltage-sensing network that is connected to one side of the engine coolant temp sensor via wire 135. The other side of the temp sensor is connected to the TCM analog ground wire 158. The resistance value of the engine coolant temperature sensor determines the voltage drop in the engine coolant temp sensor circuit. As resistance changes, the voltage drop across the temp sensor circuit will also change varying the sensor input voltage on wire 135. The TCM uses engine coolant temperature information to restrict retarder operation when an engine coolant over-heat condition is detected.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
- The TCM has autodetected the following:
 - Retarder
 - Analog engine coolant temperature sensor
 - PWM retarder request source.
- The “Retarder reduction and preselect based on engine coolant temperature” feature is enabled in the calibration.

Conditions for Setting the DTC
The TCM detects engine coolant temperature greater than a calibrated value for more than 10 seconds.

Actions Taken When the DTC Sets
When DTC P2184 is active, the following conditions will occur:
- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.
- The TCM uses default engine coolant values.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2184 may be caused by a short-to-ground on wire 135.
- Review Appendix A for diagnosing intermittent electrical conditions.
- Inspect the wiring for poor electrical connections at the TCM and engine coolant temp sensor. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
• You may have to drive the vehicle in order to experience a fault.

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper ignition voltage.
3. This step verifies which condition has set the DTC P2184.
4. This step tests for the proper 5V reference voltage at TCM.
5. This step tests for wire-to-wire shorts, shorts-to-ground, or an open in wires 135 (engine coolant temp) and wire 112 (5V reference).

DTC P2184 Engine Coolant Temperature Sensor Circuit Low Input

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record failure record. 4. Using Allison DOC™ For PC–Service Tool, measure ignition voltage. Is ignition voltage within the specified value?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem (refer to DTC P0882 and DTC P0883)</td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTCs. 2. Monitor the engine coolant temperature on Allison DOC™ For PC–Service Tool. 3. Drive the vehicle and observe Allison DOC™ For PC–service tool for an unrealistically high temperature condition. Is the Allison DOC™ For PC–Service Tool transmission fluid temperature greater than 174.11°C (345.4°F)?</td>
<td>>174.11°C (345.4°F)</td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition. 2. Install J 47275 TCM Breakout at the TCM. 3. Disconnect the engine coolant temp sensor connector. 4. Turn ON the ignition. 5. At J 47275-1 TCM Overlay connect a DVOM and measure voltage between pins 35 and 58. Is the voltage within the specified value?</td>
<td>4.75 to 5.0V</td>
<td>Go to Step 7</td>
<td>Go to Step 5</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P2184 Engine Coolant Temperature Sensor Circuit Low Input (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn OFF the ignition.
2. Disconnect J 47275 TCM Breakout from the TCM. Leave the OEM-side connected.
3. Disconnect the engine coolant temp sensor connector, if not disconnected in Step 4.
4. Using a DVOM at J 47275-1 TCM Overlay, test for pin-to-pin shorts, or shorts-to-ground, at pin 35.
Were any wiring defects found? | Go to Step 6 | Go to Step 8 |
| 6 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | Go to Step 9 |
| 7 | **NOTE:** The vehicle OEM has responsibility for the engine coolant temp sensor. Engine coolant temperature sensor repairs performed by Allison Transmission distributors and dealers are not covered by Allison warranty.
Coordinate with the vehicle OEM to troubleshoot and replace the engine coolant temp sensor.
Is replacement complete? | Go to Step 9 |
| 8 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 9 |
| 9 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor the engine coolant temperature.
3. Drive the vehicle under normal operating conditions. Watch for significant change in engine coolant temperature.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DTC P2185 Engine Coolant Temperature Sensor Circuit High Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TCM

- Retarder Request Signal
- 5V Sensor Voltage
- Throttle Position or RTDR Pressure Signal
- Analog Return
- Retarder Temp
- Engine Water Temp

PWM Throttle Source

Retarder Request Sensor (Resistance Module)

Transmission

- Analog Return
- Oil Level
- Hall Effect
- Sump Temp
- PS1

Note:
- Normally Closed

Copyright © 2005 General Motors Corp.

6–289
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2185 Engine Coolant Temperature Sensor Circuit High Input

Circuit Description
The Transmission Control Module (TCM) receives an input from an engine coolant temperature sensor. The TCM supplies a 5V reference voltage signal into a voltage-sensing network that is connected to one side of the engine coolant temp sensor via wire 135. The other side of the temp sensor is connected to the TCM analog ground wire 158. The resistance value of the engine coolant temp sensor determines the voltage drop in the engine coolant temp sensor circuit. As resistance changes, the voltage drop across the temp sensor circuit will also change varying the sensor input voltage on wire 135.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
- The TCM has autodetected the following:
 - Retarder
 - Analog engine coolant temperature sensor
 - PWM retarder request source.
- The “Retarder reduction and preselect based on engine coolant temperature” feature is enabled in the calibration.

Conditions for Setting the DTC
The TCM detects engine coolant temperature less than or equal to a calibrated value for more than 2.5 seconds.

Actions Taken When the DTC Sets
When DTC P2185 is active, the following conditions will occur:
- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.
- The TCM uses default engine coolant values.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2185 may be caused by an open on wire 135 or 158.
- DTC P2185 may be caused by a short-to-battery on wire 135. If DTC P2185 is accompanied by a DTC P0713 and/or P2743, the problem is likely a short-to-battery on wire 154, wire 135, or wire 175.
- Review Appendix A for diagnosing intermittent electrical fault conditions.
- Inspect the wiring for poor electrical connections at the TCM and engine coolant temp sensor. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
DIAGNOSTIC TROUBLE CODES (DTC)

- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle in order to experience a fault.

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level and condition.
3. This step verifies which condition has set the DTC P2185.
4. This step tests for the proper 5V reference voltage at TCM.
5. This step tests for wiring defects in the OEM chassis harness.

DTC P2185 Engine Coolant Temperature Sensor Circuit High Input

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record failure record.
4. Using Allison DOC™ For PC–Service Tool, measure ignition voltage.
Is ignition voltage within the specified value? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem (refer to DTC P0882 and DTC P0883) |
| 3 | 1. Clear the DTCs.
2. Monitor the engine coolant temperature on Allison DOC™ For PC–Service Tool.
3. Drive the vehicle and observe Allison DOC™ For PC–Service Tool for an unrealistically low temperature condition.
Is the Allison DOC™ For PC–Service Tool engine coolant temperature less than or equal to –42°C (–43.75°F)? | ≤–42°C (–43.75°F) | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout at the TCM.
3. Disconnect the engine coolant temp sensor connector.
4. Turn ON the ignition.
5. At J 47275-1 TCM Overlay connect a DVOM and select the volts-DC scale.
6. Measure voltage between pin 35 and an isolated ground.
Is the voltage within the specified value? | 4.75 to 5.0V | Go to Step 7 | Go to Step 5 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2185 Engine Coolant Temperature Sensor Circuit High Input (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Disconnect the engine coolant temperature sensor, if not disconnected in Step 4.
4. Disconnect the transmission 20-way connector and retarder temperature sensor.
5. Using a DVOM at J 47275-1 TCM Overlay, test for opens in wires 135 and 158.
6. Also test for wire-to-wire shorts, or shorts-to-battery on wire 135, wire 154, or wire 175. | Were any wiring defects found? | Go to Step 6 | Go to Step 8 |
| 6 | NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | | Go to Step 9 |
| 7 | NOTE: The vehicle OEM has responsibility for the engine coolant temp sensor. Engine coolant temperature sensor repairs performed by Allison Transmission distributors and dealers are not covered by Allison warranty.
Coordinate with the vehicle OEM to troubleshoot and replace the engine coolant temp sensor.
Is replacement complete? | | Go to Step 9 |
| 8 | NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | | Go to Step 9 |
| 9 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor the engine coolant temperature.
3. Drive the vehicle under normal operating conditions. Watch for significant change in engine coolant temperature.
Did the DTC return? | | System OK |

6–292 Copyright © 2005 General Motors Corp.
DTC P2637 Torque Management Feedback Signal (SEM)

No Schematic for this DTC

Circuit Description
Shift Energy Management (SEM) allows the Transmission Control Module (TCM) to request torque reduction from the engine controller. By reducing torque, shifts can be made quicker, at a more consistent output torque which reduces clutch temperatures and increases clutch life.

Conditions for Running the DTC
• The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
• Engine speed is greater than 200 rpm but less than 7,500 rpm for 5 seconds.
• SEM is enabled in the calibration.

Conditions for Setting the DTC
DTC P2637 sets when the TCM detects one of the following conditions for a minimum of four up shifts (consecutive or non-consecutive) during one drive cycle:
• Engine ECM is not responding to SEM torque reduction signal request from the TCM.
• A non-approved J1939 device is interfering with the SEM torque reduction signal request.

Actions Taken When the DTC Sets
When DTC P2637 is active, the following conditions will occur:
• The CHECK TRANS light illuminates.
• DTC is stored in TCM history.
• SEM operation is not active.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the actual engine torque follows TCM commanded torque for 20 consecutive up-shifts in the same ignition cycle.

Diagnostic Aids
It will be necessary to drive the vehicle with heavy to moderate throttle settings for at least four up-shift cycles in order to set a DTC P2637.

When a DTC P2637 is set with a P0614, start troubleshooting with P0614 first. This combination of DTCs indicates that AUTOSELECT was active and engine software is not correct.

Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step tests for presence of DTC P0614.
3. This step tests for proper ECM SEM torque request response.
4. This step tests to identify the device causing the torque request to be ignored.
5. This step tests for the offending device by removing it from the J1939 network.
6. This step tests for the presence of proper engine controller software.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2637 Torque Management Feedback Signal (SEM)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
</tr>
<tr>
<td>2</td>
<td>If DTC P0614 is present, troubleshoot and resolve before going to the next step.</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Turn ON the ignition.
3. Refer to the SEM torque reduction status in SEM/LRTP AUTODECT INFO display of Allison DOC™ For PC–Service Tool.
Does Allison DOC™ For PC–Service Tool indicate the ECM response to SEM torque reduction as INCORRECT? |
| 4 | Use Allison DOC™ For PC–Service Tool to identify an unapproved SEM torque reduction device.
Is the unapproved device one of the following?
1. Engine or transmission?
2. Null Address (N/A) or All/Any (info not valid)? |
| 5 | 1. If Allison DOC™ For PC–Service Tool is indicating another device such as brakes, cruise control, headway controller etc., inspect the controller for the device indicated.
2. If possible eliminate the device by disconnecting it from the J1939 CAN backbone.
NOTE: It may be possible that the device causing the interruption is only triggered under certain circumstances. For example, a brake controller may only send commands under certain road conditions. Since these conditions may not be easily repeatable, replacement with a known good controller may be the only way to verify the failure.
3. If necessary to confirm the failure, test the system with a known good controller.
Was the device causing the problem replaced or repaired? |
| 6 | 1. Verify that compatible engine controller software is being used.
2. If the software is correct, turn the vehicle over to the engine manufacturer to replace the engine controller.
3. If neither solves the problem, use an engine torque/power rating that does not require SEM.
Was the software updated or engine controller replaced? |
In order to verify your repair:
1. Install Allison DOC™ For PC–Service Tool.
2. Clear the DTC.
3. Drive the vehicle under moderate to heavy throttle setting for at least four up shift cycles.
4. Attempt to duplicate conditions when DTC was set (cruise control, headway controls, ABS, etc.). Did the DTC return?

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>In order to verify your repair:</td>
<td></td>
<td>Begin the diagnosis again.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Install Allison DOC™ For PC–Service Tool.</td>
<td></td>
<td>Go to Step 1</td>
<td>System OK</td>
</tr>
<tr>
<td></td>
<td>2. Clear the DTC.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Drive the vehicle under moderate to heavy throttle setting for at least four up shift cycles.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Attempt to duplicate conditions when DTC was set (cruise control, headway controls, ABS, etc.). Did the DTC return?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2641 Torque Management Feedback Signal (LRTP)

No Schematic for this DTC

Circuit Description
Lower Range Torque Protection (LRTP) protects the transmission during low vehicle speed conditions. When an engine torque rating exceeds a predetermined value, LRTP limits engine torque in lower ranges to protect the transmission from damage during a converter stall condition.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm but less than 7500 rpm for 5 seconds.
- LRTP is enabled in the calibration.

Conditions for Setting the DTC
DTC P2641 sets when the TCM detects one of the following conditions for a minimum of four up shifts (consecutive or non-consecutive) during one drive cycle:
- Engine ECM is not responding to LRTP torque reduction signal request from the TCM.
- A non-approved J1939 device is interfering with the LRTP torque reduction signal request.

Actions Taken When the DTC Sets
When DTC P2641 is active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- LRTP operation is not active.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
It may be necessary to drive the vehicle in order to set a DTC P2641.

When a DTC P2641 is set with a P0614, start troubleshooting with P0614 first. This combination of DTCs indicates that AUTOSELECT was still active and the engine software is not correct.

Test Description
The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the presence of DTC P0614.
3. This step tests for proper ECM LRTP torque request response.
4. This step tests to identify the device causing the torque request to be ignored.
5. This step tests for the offending device by removing it from the J1939 network.
6. This step tests for the presence of proper engine controller software.
DTC P2641 Torque Management Feedback Signal—LRTP

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>If DTC P0614 is present, troubleshoot and resolve before going to the next step.</td>
<td></td>
<td>Go to DTC P0614 and resolve before proceeding to Step 3</td>
<td>Go to Step 3</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Turn ON the ignition.
3. Refer to LRTP torque reduction status in SEM/LRTP AUTODETECT INFO display of Allison DOC™ For PC–Service Tool.
Does Allison DOC™ For PC–Service Tool indicate the ECM response to LRTP torque reduction as INCORRECT? | Allison DOC™ diagnostic tool indicates “correct response” or “incorrect response” | Go to Step 6 | Go to Step 4 |
| 4 | Use Allison DOC™ For PC–Service Tool to identify an unapproved LRTP torque reduction device.
Is the unapproved device one of the following?
1. Engine?
2. Null Address (N/A) or All/Any (info not valid)? | Allison DOC™ For PC–Service Tool shows the actual device at fault | Go to Step 6 | Go to Step 5 |
| 5 | 1. If Allison DOC™ For PC–Service Tool is indicating another device such as brakes, cruise control, headway controller etc., inspect the controller for the device indicated.
2. If possible eliminate the device by disconnecting it from the J1939 CAN backbone.
NOTE: It may be possible that the device causing the interruption is only triggered under certain circumstances. For example, a brake controller may only send commands under certain road conditions. Since these conditions may not be easily repeatable, replacement with a known good controller may be the only way to verify the failure.
3. If necessary to confirm the failure, test the system with a known, good controller.
Was the device causing the problem replaced or repaired? | | | Go to Step 7 |
| 6 | 1. Verify that compatible engine controller software is being used.
2. If the software is correct, turn the vehicle over to the engine manufacturer to replace the engine controller.
3. If neither solves the problem, use an engine torque/power rating that does not require LRTP.
Was the software updated or engine controller replaced? | | | Go to Step 7 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2641 Torque Management Feedback Signal—LRTP (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 7 | In order to verify your repair:
1. Install Allison DOC™ For PC–Service Tool.
2. Clear the DTC.
3. Drive the vehicle. Refer to Allison DOC™ For PC–Service Tool “Test Passed” section and confirm the test was run.
4. Attempt to duplicate the conditions when the DTC was set (loads, grades, road conditions).
Did the DTC return? | | Begin the diagnosis again.
Go to Step 1 | System OK |
DTC P2670 Actuator Supply Voltage 2 (HSD2) Low

Circuit Description
High Side Driver 2 (HSD2) supplies battery voltage to the PCS1, PCS2, PCS3, and SS1 solenoids via wire 171. HSD2 is continuously ON during normal operation except during brief circuit tests. The TCM regulates control current to the solenoids by switching the appropriate Low Side Driver (LSD) ON and OFF. DTC P2670 indicates the TCM has detected a supply voltage in the HSD2 circuit of 6V or less. DTC P2670 could be caused by a short-to-ground in the high side wiring attached to HSD2 (wire 171).

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- HSD2 is commanded ON.
- Engine speed greater than 200 rpm.

Conditions for Setting the DTC
DTC P2670 is set when the TCM detects a low voltage condition (less than 6V) in three solenoids in the HSD2 circuit.

Actions Taken When the DTC Sets
When DTC P2670 is active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2670 Actuator Supply Voltage 2 (HSD2) Low

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for a wire-to-wire short, or short-to-ground in the wire 171 of the OEM chassis harness.
6. This step tests for wiring defects in the transmission internal harness.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Monitor ignition voltage. Is voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problems</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2670 Actuator Supply Voltage 2 (HSD2) Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect a short-to-ground condition in the HSD2 electrical circuit.
Did DTC P2670 return? | | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | **NOTE:** Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Disconnect the 80-way connectors at the TCM.
3. Install the OEM-side of the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the OEM-side 20-way connector from the transmission.
5. Inspect the routing of wire 171 in the chassis harness between the TCM and the transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 71 and all other pins in the 80-way connector, and test for shorts-to-ground between pin 71 and chassis ground.
Were any wire-to-wire shorts or shorts-to-ground found? | | | Go to Step 5 | Go to Step 6 |
| 5 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the chassis harness.
Is the repair complete? | | | | Go to Step 9 |
| 6 | 1. Turn OFF the ignition.
2. Install the transmission 20-way connector to the J 47279 Transmission Breakout. Leave the OEM-side disconnected.
3. Using a DVOM at J 47279-1 Transmission Overlay, test for wire-to-wire shorts between pin 6 and all other pins in the 20-way connector, and shorts-to-ground between pin 6 and chassis ground.
NOTE: The resistance value between pins 6 and 4, between pins 6 and 5, between pins 6 and 9, and between pins 6 and 10 will read normal solenoid resistance.
Were any opens, wire-to-wire shorts or shorts-to-ground found? | | | Go to Step 7 | Go to Step 8 |
Diagnostic Trouble Codes (DTC)

DTC P2670 Actuator Supply Voltage 2 (HSD2) Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 7 | 1. Remove the hydraulic control module assembly.
 2. Repair or replace the internal wiring harness.
 Is the repair complete? | | | Go to Step 9 |
| 8 | *NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.*
 Refer to TCM Diagnostic Procedure, Section 3–6.
 Is Section 3–6 complete? | | | Go to Step 9 |
| 9 | In order to verify your repair:
 1. Clear the DTC.
 2. Drive the vehicle under conditions noted in failure records.
 Did the DTC return? | | | System OK |

Begin the diagnosis again. Go to Step 1
Circuit Description

High Side Driver 2 (HSD2) supplies battery voltage to the PCS1, PCS2, PCS3, and SS1 solenoids via wire 171. HSD2 is continuously ON during normal operation except during brief circuit tests. The TCM regulates control current to the solenoids by switching the appropriate Low Side Driver (LSD) ON and OFF. DTC P2671 indicates the TCM has detected greater than or equal to 6V in the HSD2 circuit when HSD2 is OFF during TCM initialization. DTC P2671 could be caused by an open or short-to-battery in the high side wiring attached to HSD2 (wire 171).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- HSD2 is commanded ON.
- Engine speed greater than 200 rpm.

Conditions for Setting the DTC

DTC P2671 is set when the TCM detects a high voltage condition (> 6V) in the HSD2 circuit after two solenoids indicate a failure.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2671 Actuator Supply Voltage 2 (HSD 2) High

Actions Taken When the DTC Sets

When DTC P2671 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for an open in wire 171 of OEM chassis harness.
5. This step tests for a wire-to-wire short, or short-to-battery in the wire 171 of the OEM chassis harness.
6. This step tests for wiring defects in the transmission internal harness.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2671 Actuator Supply Voltage 2 (HSD2) High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problems</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Monitor ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is voltage within the specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine and test drive the vehicle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC is intended to detect an open or short-to-battery condition in the HSD2 electrical circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P2671 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td>Go to Step 6</td>
<td>Go to Step 5</td>
</tr>
<tr>
<td></td>
<td>2. Install the J 47275 TCM Breakout at the TCM 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install J 47275 TCM Breakout at the transmission 20-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Turn ON the ignition, leave the engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command PCS3 ON.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Determine the voltage drop in the HSD2 circuit as follows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47275-1 TCM Overlay, measure voltage between pin 71 and an isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47279-1 Transmission Overlay, measure voltage between pin 6 and isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Subtract the two voltage measurements to obtain the voltage drop in the circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: A voltage drop of more than 0.5V indicates an excessive voltage loss in the OEM harness.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did the high-side voltage drop exceed 0.5VDC?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2671 Actuator Supply Voltage 2 (HSD2) High (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 harness. Leave the OEM-side connected.
3. Disconnect the OEM-side of the 20-way connector J 47279 Transmission Breakout. Leave the transmission-side connected.
4. Inspect the routing of wire 171 in the chassis harness between the TCM and the transmission connector.
5. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 71 and all other pins in the 80-way connector.
Were any wire-to-wire shorts found? | Go to Step 6 | Go to Step 7 |
| 6 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repair performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | Got to Step 10 |
| 7 | 1. Turn OFF the ignition.
2. Verify the J 47279 Transmission Breakout is installed at the transmission 20-way connector and the OEM-side is disconnected.
3. Using a DVOM at J 47279-1 Transmission Overlay, test for wire-to-wire shorts between pin 6 and all other pins in the 20-way connector.
NOTE: The resistance value between pins 6 and 4, between pins 6 and 5, between pins 6 and 9, and between pins 6 and 10 will read normal solenoid resistance. Refer to Solenoid Resistance chart for these values.
Were any wire-to-wire shorts found? | Go to Step 8 | Go to Step 9 |
| 8 | 1. Remove the hydraulic control module assembly.
2. Repair or replace the internal wiring harness.
Is the repair complete? | Go to Step 10 |
| 9 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 10 |
| 10 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
Circuit Description

High Side Driver 3 (HSD3) supplies battery voltage to the TCC, PCS5 (retarder and 7-speed models) and SS2 (also, retarder and 7-speed models) solenoids via wire 131. HSD3 is continuously ON during normal operation except during brief circuit tests. The TCM regulates control current to the solenoids by switching the appropriate Low Side Driver (LSD) ON and OFF. DTC P2685 indicates the TCM has detected a supply voltage in the HSD3 circuit of 6V or less. DTC P2685 could be caused by a short-to-ground in the high side wiring attached to HSD3 (wire 131).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- HSD3 is commanded ON.
- Engine speed greater than 200 rpm.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2685 Actuator Supply Voltage 3 (HSD 3) Low

Conditions for Setting the DTC

DTC P2685 is set when the TCM detects a low voltage condition (less than 6V) in two solenoids in the HSD3 circuit.

Actions Taken When the DTC Sets

When DTC P2685 is active, the following conditions will occur:

• The CHECK TRANS light illuminates.
• DTC is stored in TCM history.
• Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

• You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
• Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for a wire-to-wire short, or short-to-ground in the wire 131 of the OEM chassis harness.
6. This step tests for wiring defects in the transmission internal harness.
Diagnostic Trouble Codes (DTC)

DTC P2685 Actuator Supply Voltage 3 (HSD 3) Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beginning the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Troubleshooting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td>18–32V (24V TCM)</td>
<td></td>
<td>problems</td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Monitor ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is voltage within the specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine and test drive the vehicle.</td>
<td></td>
<td></td>
<td>Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>3. Attempt to duplicate the same conditions observed in the failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>records (range attained, temperature, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC is intended to detect a short-to-ground condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the HSD3 electrical circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P2685 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td></td>
<td>2. Disconnect the 80-way connector at the TCM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install the OEM-side of the 80-way connector to the J 47275 TCM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breakout. Leave the TCM disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Disconnect the OEM 20-way connector from the transmission.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. For retarder transmissions, disconnect the SS2 (accumulator) and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCS5 (retarder control) connectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. For 3000 7-speed only, disconnect the T-case electrical connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Inspect the routing of wire 131 in the chassis harness between the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCM and the transmission connectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 and all other pins in the 80-way connector, and test for shorts-to-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ground between pin 31 and chassis ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Were any wire-to-wire shorts or shorts-to-ground found?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring</td>
<td></td>
<td>Go to Step 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>harness repairs. Harness repairs performed by Allison Transmission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>distributors and dealers are not covered by Allison Transmission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>warranty. Coordinate with the vehicle OEM to repair or replace the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chassis harness.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the repair complete?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2685 Actuator Supply Voltage 3 (HSD 3) Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install the transmission 20-way connector to the J 47279 Transmission Breakout. Leave the OEM-side connected.
3. Using a DVOM at J 47279-1 Transmission Overlay, test for wire-to-wire shorts between pin 11 and all other pins in the 20-way connector, and shorts-to-ground between pin 11 and chassis ground.
NOTE: The resistance value between pins 11 and 12, and between pins 11 and 17 (7-speed models) will read normal solenoid resistance.
Were any opens, wire-to-wire shorts, or shorts-to-ground found? | Go to Step 7 | Go to Step 8 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Repair or replace the internal wiring harness.
Is the repair complete? | Go to Step 9 |
| 8 | *NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.*
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 9 |
| 9 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DTC P2686 Actuator Supply Voltage 3 (HSD 3) High

Circuit Description
High Side Driver 3 (HSD3) supplies battery voltage to the TCC, PCS5 (retarder and 7-speed models) and SS2 (also, retarder and 7-speed models) solenoids via wire 131. HSD3 is continuously ON during normal operation except during brief circuit tests. The TCM regulates control current to the solenoids by switching the appropriate Low Side Driver (LSD) ON and OFF. DTC P2686 indicates the TCM has detected greater than or equal to 6V in the HSD3 circuit when HSD3 is OFF during TCM initialization. DTC P2686 could be caused by an open or short-to-battery in the high side wiring attached to HSD3 (wire 131).

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- HSD3 is commanded ON.
- Engine speed greater than 200 rpm.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2686 Actuator Supply Voltage 3 (HSD 3) High

Conditions for Setting the DTC
DTC P2686 is set when the TCM detects a high voltage condition (> 6V) in the HSD3 circuit after two solenoids indicate a failure.

Actions Taken When the DTC Sets
When DTC P2686 is active, the following conditions will occur:

• The CHECK TRANS light illuminates.
• DTC is stored in TCM history.
• Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOCTM For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
• Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for an open in wire 131 of the OEM chassis harness.
5. This step tests for wire-to-wire short, or short-to-battery in wire 131 of the OEM chassis harness.
7. This step tests for wiring defects in the transmission internal harness.
DTC P2686 Actuator Supply Voltage 3 (HSD3) High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problems</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Monitor ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is voltage within the specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine and test drive the vehicle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Attempt to duplicate the same conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC is intended to detect an open or short-to-battery condition in the HSD3 electrical circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P2686 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td>Go to Step 6</td>
<td>Go to Step 5</td>
</tr>
<tr>
<td></td>
<td>2. Install the J 47275 TCM Breakout at the 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install J 47279 adapter at the 20-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Turn ON the ignition. Leave the engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command the TCC solenoid ON.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Determine the voltage drop in the HSD3 circuit as follows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47275-1 TCM Overlay, measure voltage between pin 31 and an isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47279-1 Transmission Overlay, measure voltage drop between pin 11 and an isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Subtract the two voltage measurements to obtain the voltage drop in the circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: A voltage drop of more than 0.5V indicates an excessive voltage loss in the OEM harness.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did the high-side voltage drop exceed 0.5VDC?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2686 Actuator Supply Voltage 3 (HSD3) High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1. Turn OFF the ignition.
 2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
 3. Disconnect the OEM-side of the 20-way connector from the J 47279 adapter. Leave the transmission-side connected.
 4. Inspect the routing of wire 131 in the chassis harness between the TCM and the transmission connectors.
 5. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 31 and all other pins in the 80-way connector.
 Were any wire-to-wire shorts found?</td>
<td>Go to Step 6</td>
<td>Go to Step 7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
 Coordinate with the vehicle OEM to repair or replace the chassis harness.
 Is the repair complete?</td>
<td>Go to Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. Turn OFF the ignition.
 2. Verify the J 47279 Transmission Breakout is installed at the transmission 20-way connector and the OEM-side is disconnected.
 3. Using a DVOM at J 47279-1 Transmission Overlay, test for wire-to-wire shorts between pin 11 and all other pins in the 20-way connector.
 NOTE: The resistance value between pins 11 and 12, and between pins 11 and 17 (7-speed models) will read normal solenoid resistance.
 Were any wire-to-wire shorts found?</td>
<td>Go to Step 8</td>
<td>Go to Step 9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1. Remove the hydraulic control module assembly.
 2. Repair or replace the internal wiring harness.
 Is the repair complete?</td>
<td>Go to Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
 Refer to TCM diagnostic procedure, Section 3–6.
 Is Section 3–6 complete?</td>
<td>Go to Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>In order to verify your repair:
 1. Clear the DTC.
 2. Drive the vehicle under conditions noted in failure records.
 Did the DTC return?</td>
<td>Begin the diagnosis again.</td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>
DTC P2714 Pressure Control Solenoid 4 (PCS4) Stuck Off

Refer to Hydraulic Schematic

Circuit Description

The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to detect if a clutch is slipping. Pressure Control Solenoid 4 (PCS4) supplies hydraulic pressure to the C4 clutch in second and sixth ranges. The TCM sets a DTC P2714 when it detects a slip condition while PCS4 is supplying hydraulic pressure to the oncoming clutch.

Conditions for Running the DTC

- Hydraulic system is pressurized.
- Output speed greater than or equal to 125 rpm.
- Turbine speed greater than or equal to 60 rpm.
- Cold Mode operation not required.

Conditions for Setting the DTC

DTC P2714 sets when the TCM detects an incorrect oncoming ratio (range-to-range) for an accumulated number of occurrences.

Actions Taken When the DTC Sets

- When DTC P2714 occurs, the TCM will command previous range.
- While Diagnostic Response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- This DTC indicates the oncoming clutch being controlled by PCS4 is not applied or applied too slowly. Common causes include:
 - Erratic turbine or output speed signals.
 - A leak or obstruction in the C4 clutch apply circuit.
 - A defective solenoid.
 - A stuck PCS4 regulator valve.
- PCS4 supplies hydraulic pressure to C4 clutch in second and sixth ranges. Check the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
DIAGNOSTIC TROUBLE CODES (DTC)

• If the condition is intermittent, connect Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 — Intermittent wiring connection
 — Excessive vibration (driveline or engine torsionals)
 — Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

Test Description

The numbers below refer to step numbers on the diagnostic table.

 2. This step tests for proper transmission fluid level.
 3. This step tests for active diagnostic codes.
 4. This step tests ignition voltage.
 5. This step tests speed sensor readings.
 6. This step tests for C4 clutch pressure from PCS4.
 7. This step tests for evidence of clutch failure.
 8. This step tests for stuck or sticking valves and damaged valve body gaskets.

DTC P2714 Pressure Control Solenoid 4 (PCS4) Stuck Off

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to the appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Turn ON the ignition, leave engine OFF. 3. Record the failure records. 4. Clear the DTC. 5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records. NOTE: This DTC indicates that the TCM has detected a slip condition and could not verify the correct oncoming ratio following a shift. Did DTC P2714 return?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the DTC Failure Record data. 4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified value?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 5</td>
<td>Go to General Troubleshooting Section 8</td>
</tr>
<tr>
<td>5</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions. 2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display. Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to appropriate speed sensor DTC</td>
<td>Go to Step 6</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2714 Pressure Control Solenoid 4 (PCS4) Stuck Off (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in Main and C4 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the failure records.
6. Read and record Main and C4 clutch pressures. Are the pressure readings within specified values in Appendix B? | Refer to Main and Clutch Pressure specification in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection. Are there signs of a clutch failure? | | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals. Was a valve body problem found and repaired? | | Go to Step 11 | Go to Step 9 |
| 9 | Replace PCS4. Is the replacement complete? | | Go to Step 11 |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris. If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual). Is the replacement complete? | | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine and output speed sensor readings.
3. Drive the vehicle under normal operating conditions. Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2715 Pressure Control Solenoid 4 (PCS4) Stuck On

Refer to Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses information from the turbine and output speed sensors to detect if a clutch is in a tie-up condition or if three clutches are applied. Pressure Control Solenoid 4 (PCS4) supplies hydraulic pressure to the C4 clutch in second and sixth ranges. The TCM sets a DTC P2715 when it detects a tie-up condition while PCS4 is supplying hydraulic pressure to the off-going clutch.

Conditions for Running the DTC
- Hydraulic system is pressurized.
- Output speed greater than or equal to 200 rpm.
- Turbine speed greater than or equal to 200 rpm.
- Cold Mode operation not required.

Conditions for Setting the DTC
DTC P2715 sets when the transmission is shifting from range to range and the off-going range (ratio) remains engaged even though the off-going clutch is commanded OFF.

Actions Taken When the DTC Sets
- When DTC P2715 occurs, the TCM will command previous range.
- While Diagnostic Response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- This DTC indicates the off-coming clutch being controlled by PCS4 is not released or released too slowly. Common causes include:
 - Erratic turbine and output speed sensor readings.
 - An obstruction in the C4 clutch exhaust circuit.
 - A defective PCS4 solenoid.
 - A stuck PCS4 regulator valve.
- PCS4 supplies hydraulic pressure to C4 clutch in second and sixth ranges. Check the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
- If the condition is intermittent, connect Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).
Diagnostic Trouble Codes (DTC)

Test Description

The numbers below refer to step numbers on the diagnostic table.

- **2.** This step tests for proper transmission fluid level.
- **3.** This step tests for active diagnostic codes.
- **4.** This step tests ignition voltage.
- **5.** This step tests speed sensor readings.
- **6.** This step tests for C4 clutch pressure from PCS4.
- **7.** This step tests for evidence of clutch failure.
- **8.** This step tests for stuck or sticking valves and damaged valve body gaskets.

DTC P2715 Pressure Control Solenoid 4 (PCS4) Stuck On

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>Install the Allison DOC™ For PC–Service Tool.
1. Turn ON the ignition, leave engine OFF.
2. Record the failure records.
3. Clear the DTC.
4. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that the TCM has detected that the off-going clutch did not release (clutch tie-up), following a shift. Did DTC P2715 return?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the DTC Failure Record data.
4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified value?</td>
<td>9–18V (12V TCM)
18–32V (24V TCM)</td>
<td>Go to Step 5</td>
<td>Go to General Troubleshooting Section 8</td>
</tr>
<tr>
<td>5</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions.
2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display. Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to appropriate speed sensor DTC</td>
<td>Go to Step 6</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2715 Pressure Control Solenoid 4 (PCS4) Stuck On *(cont'd)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in Main and C4 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the failure records.
6. Read and record Main and C4 clutch pressures.
Are the pressure readings within specified values in Appendix B? | Refer to Main and Clutch Pressure specification in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection.
Are there signs of a clutch failure? | | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals.
Was a valve body problem found and repaired? | | Go to Step 11 | Go to Step 9 |
| 9 | Replace PCS4.
Is the replacement complete? | | Go to Step 11 | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris.
If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual).
Is the replacement complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions.
Did the DTC return? | | Begin the diagnosis again.
Go to Step 1 | System OK |
DTC P2718 Pressure Control Solenoid 4 (PCS4) Control Circuit Open

Circuit Description

Pressure Control Solenoid 4 (PCS4) is a normally closed (N/C) solenoid used to apply the C4 clutch in second and sixth ranges. The TCM commands the solenoid ON to produce hydraulic pressure in the clutch apply circuit. When PCS4 is commanded OFF, the clutch pressure is released.

The TCM sends control current to PCS4 from High Side Driver 1 (HSD1) via wire 111. HSD1 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS4 by switching PCS4 Low Side Driver (LSD) ON and OFF. Wire 155 completes the circuit between PCS4 and its LSD. DTC P2718 indicates that the TCM has detected an open condition in PCS4 electrical circuit. The open condition may exist in the high side (wire 111) or low side (wire 155).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P2718 is set when the TCM detects an open circuit on the PCS4 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2718 Pressure Control Solenoid 4 (PCS4) Control Circuit Open

Actions Taken When the DTC Sets
When DTC P2718 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P2718 indicates an open in the electrical circuit for the PCS4. In addition to PCS4, HSD1 also supplies power to Main Mod and PCS6. If DTC P2718 is accompanied by DTC P0960 (Main Mod open circuit) and/or P2812 (PCS6 open circuit), the open is most likely in the high side of the circuit.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests the OEM harness for an excessive voltage drop caused by an open condition in either wire 111 or wire 155 of the OEM chassis harness.
6. This step tests for an open condition in the transmission internal harness.
7. This step tests for the proper PCS4 resistance.
DTC P2718 Pressure Control Solenoid 4 (PCS4) Control Circuit Open

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | **Go to Step 3** | **Resolve voltage problem** |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect an open condition in the PCS4 electrical circuit.
Did DTC P2718 return? | | **Go to Step 4** | **Go to Diagnostic Aids** |
| 4 | **NOTE:** Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout between the OEM external wiring harness and TCM 80-way connectors.
3. Install J 47279 Transmission Breakout between the OEM external wiring harness and transmission 20-way connectors.
4. Turn ON the ignition, leave engine OFF.
5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command PCS4 ON.
6. Determine the voltage drop in the high side of the PCS4 circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 11 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 1 and an isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.
7. Determine the voltage drop in the low side of the PCS4 circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 55 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 2 and an isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.
NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness.
Did either high-side or low-side voltage drop exceed 0.5VDC? | | **Go to Step 5** | **Go to Step 6** |
Diagnostic Trouble Codes (DTC)

DTC P2718 Pressure Control Solenoid 4 (PCS4) Control Circuit Open (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Disconnect the OEM 20-way connector from J 47279 Transmission Breakout. Leave the transmission 20-way connector connected to the breakout.
3. Using a digital multimeter (DVOM), measure the resistance between pin 1 and pin 2 of the transmission 20-way connector. Is the resistance within the specified value? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 10 | Go to Step 7 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Disconnect PCS4 from the internal wiring harness.
3. Using a DVOM, measure PCS4 resistance at pins A and B. Is resistance within the specified values? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness. Is the replacement complete? | Go to Step 11 | | |
| 9 | Replace PCS4. Is the replacement complete? | Go to Step 11 | | |
| 10 | NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | Go to Step 11 | | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records. Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK | |
Circuit Description

Pressure Control Solenoid 4 (PCS4) is a normally closed (N/C) solenoid used to apply the C4 clutch in second and sixth ranges. The TCM commands the solenoid ON to produce hydraulic pressure in the clutch apply circuit. When PCS4 is commanded OFF, the clutch pressure is released.

The TCM sends control current to PCS4 from High Side Driver 1 (HSD1) via wire 111. HSD1 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS4 by switching PCS4 Low Side Driver (LSD) ON and OFF. Wire 155 completes the circuit between PCS4 and its LSD. DTC P2720 indicates that the TCM has detected a short-to-ground condition in the low side of PCS4 electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P2720 is set when the TCM detects a short-to-ground in the PCS4 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2720 Pressure Control Solenoid 4 (PCS4) Control Circuit Low

Actions Taken When the DTC Sets

When DTC P2720 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P2720 indicates a short-to-ground in the electrical circuit for PCS4.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the Hertz button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOCTM For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
Test Description

This DTC requires the use of the J 47279—3000 and 4000 Product Families Transmission Breakout Harness. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 155.
6. This step tests for the wire-to-wire shorts or a short-to-ground in the internal transmission harness.

DTC P2720 Pressure Control Solenoid 4 (PCS4) Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect a short-to-ground condition in the PCS4 electrical circuit.
Did DTC P2720 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | *NOTE: Review Section 4—Wire Test Procedures before performing steps.*
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 harness. Leave the TCM disconnected.
4. Disconnect the transmission 20-way connector.
5. Inspect the routing of wire 155 in the chassis harness between the TCM and the transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 55 and all other pins in the 80-way connector, and shorts-to-ground between pin 55 and chassis ground.
Were any wire-to-wire shorts or shorts-to-ground wiring defects found? | | Go to Step 5 | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2720 Pressure Control Solenoid 4 (PCS4) Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition. 2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected. 3. Using a DVOM, test for wire-to-wire shorts between pin 2 and all other pins in the 20-way connector, and shorts-to-ground between pin 2 and chassis ground. NOTE: The resistance value between pins 2 and 1, and between pins 2 and 20 will read normal solenoid resistance. The resistance value between pins 2 and 7 (7-speed models), and between pins 2 and 8 will be twice normal solenoid resistance. Refer to the Solenoid Resistance chart for these values. Were any wire-to-wire shorts or shorts-to-ground found?</td>
<td>Refer to Solenoid Resistance Chart (Appendix K) Go to Step 7 Go to Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. Remove the hydraulic control module assembly. 2. Inspect the internal harness for wire-to-wire shorts or shorts-to-ground. 3. Were wire-to-wire shorts or shorts-to-ground found?</td>
<td>Go to Step 8 Go to Step 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Replace the internal wiring harness. Is the replacement complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Replace PCS4. Is the replacement complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under conditions noted in failure records. Did the DTC return?</td>
<td>Begin the diagnosis again. Go to Step 1 System OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Circuit Description

Pressure Control Solenoid 4 (PCS4) is a normally closed (N/C) solenoid used to apply the C4 clutch in second and sixth ranges. The TCM commands the solenoid ON to produce hydraulic pressure in the clutch apply circuit. When PCS4 is commanded OFF, the clutch pressure is released.

The TCM sends control current to PCS4 from High Side Driver 1 (HSD1) via wire 111. HSD1 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS4 by switching PCS4 Low Side Driver (LSD) ON and OFF. Wire 155 completes the circuit between PCS4 and its LSD. DTC P2721 indicates that the TCM has detected a short-to-battery condition in the low side of PCS4 electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P2721 is set when the TCM detects a short-to-battery in the PCS4 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2721 Pressure Control Solenoid 4 (PCS4) Control Circuit High

Actions Taken When the DTC Sets
When DTC P2721 is active, the following conditions will occur:

• The CHECK TRANS light illuminates.
• DTC is stored in TCM history.
• Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

• DTC P2721 indicates a short-to-battery in the electrical circuit for the PCS4 solenoid.
• You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
• Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
• Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

1. This step tests for the proper ignition voltage.
2. This step tests for an active DTC.
3. This step tests for wire-to-wire shorts between wire 155 and other wires in the OEM chassis harness.
4. This step tests for the wire-to-wire shorts in the transmission internal harness.

DTC P2721 Pressure Control Solenoid 4 (PCS4) Control Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is voltage within specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect a short-to-battery condition in the PCS4 electrical circuit.
Did DTC P2721 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | **NOTE: Review Section 4—Wire Test Procedures before performing steps.**
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM-side disconnected.
4. Disconnect the transmission 20-way connector.
5. Inspect the routing of wire 111 in the chassis harness between the TCM and the transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 55 and all other pins in the 80-way connector.
Were any wire-to-wire shorts found? | | Go to Step 5 | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2721 Pressure Control Solenoid 4 (PCS4) Control Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the chassis harness. Is the repair complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
 2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 2 and all other pins in the 20-way connector.
NOTE: The resistance value between pins 2 and 1, and between pins 2 and 20 will read normal solenoid resistance. The resistance value between pins 2 and 7 (7-speed models), and between pins 2 and 8 will be twice normal solenoid resistance. Refer to the Solenoid Resistance chart for these values. Were any wire-to-wire shorts found? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 7 | Go to Step 10 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts. Were any wire-to-wire shorts found? | | Go to Step 8 | Go to Step 9 |
| 8 | Repair or replace the internal wiring harness. Is the repair complete? | | Go to Step 11 | |
| 9 | Replace PCS4. Is the replacement complete? | | Go to Step 11 | |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions. Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2723 Pressure Control Solenoid 1 (PCS1) Stuck Off
Refer to Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to detect if a clutch is slipping. Pressure Control Solenoid 1 (PCS1) supplies hydraulic pressure to the C1 clutch in first range through fourth range. The TCM sets a DTC P2723 when it detects a slip condition while PCS1 is supplying hydraulic pressure to the oncoming clutch.

Conditions for Running the DTC
- Hydraulic system is pressurized.
- Output speed greater than or equal to 125 rpm.
- Turbine speed greater than or equal to 60 rpm.
- Cold Mode operation not required.

Conditions for Setting the DTC
DTC P2723 sets when the TCM detects an incorrect oncoming ratio (range-to-range) for an accumulated number of occurrences.

Actions Taken When the DTC Sets
- When DTC P2723 occurs, the TCM will command previous range.
- While Diagnostic Response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- This DTC indicates the oncoming clutch being controlled by PCS1 is not applied or applied too slowly. Common causes include:
 - Erratic turbine or output speed signals.
 - A leak or obstruction in a specific clutch apply circuit.
 - A defective solenoid. PCS1 and SS1 each receive commands from the TCM during a shift to Drive. A failure of either solenoid or related hydraulic circuit can cause a DTC P2723.
 - A stuck PCS1 regulator valve.
 - A stuck C1 logic latch valve.
- PCS1 supplies hydraulic pressure to C1 clutch in first range through fourth ranges. Check the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
- If the condition is intermittent, connect Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the DTC. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).
Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for active diagnostic codes.
4. This step tests ignition voltage.
5. This step tests speed sensor readings.
6. This step tests for C1 clutch pressure from PCS1.
7. This step tests for evidence of clutch failure.
8. This step tests for stuck or sticking valves and damaged valve body gaskets.

DTC P2723 Pressure Control Solenoid 1 (PCS1) Stuck Off

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Turn ON the ignition, leave engine OFF. 3. Record the failure records. 4. Clear the DTC. 5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the DTC Failure Record data. 4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified value?</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to Step 5</td>
<td>Go to General Troubleshooting (Section 7)</td>
</tr>
<tr>
<td>5</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions. 2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display. Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td></td>
<td>Go to Step 6</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2723 Pressure Control Solenoid 1 (PCS1) Stuck Off (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main and C1 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the Failure Records.
6. Read and record Main and C1 clutch pressures. Are the pressure readings within specified values in Appendix B? | Refer to Main and Clutch Pressure specifications in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection. Are there signs of a clutch failure? | | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals.
5. Be sure the C1 latch valve is not sticking. The valve should drop freely into its bore. Was a valve body problem found and repaired? | | Go to Step 11 | Go to Step 9 |
| 9 | Consult Allison DOC™ For PC–Service Tool failure record data. Replace PCS1 and/or SS1 based on the following:
• DTC P2723 logged during neutral-to-drive and/or reverse-to-drive shifts only—replace both PCS1 and SS1.
• DTC P2723 logged during fifth-to-fourth range shifts—replace PCS1 only. Is the replacement complete? | | Go to Step 11 | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris. If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual). Is the replacement complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions. Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2724 Pressure Control Solenoid 1 (PCS1) Stuck On

Refer to Hydraulic Schematic

Circuit Description
The Transmission Control Module (TCM) uses information from the turbine and output speed sensors to detect if a clutch is in a tie-up condition or if three clutches are applied. Pressure Control Solenoid 1 (PCS1) supplies hydraulic pressure to the C1 clutch in first through fourth ranges. The TCM sets a DTC P2724 when it detects a tie-up condition while PCS1 is supplying hydraulic pressure to the off-going clutch.

Conditions for Running the DTC
- Hydraulic system is pressurized.
- Output speed greater than or equal to 200 rpm.
- Turbine speed greater than or equal to 200 rpm.
- Cold Mode operation not required.

Conditions for Setting the DTC
DTC P2724 sets when the transmission is shifting from range to range and the off-going range (ratio) remains engaged even though the off-going clutch is commanded OFF.

Actions Taken When the DTC Sets
- When DTC P2724 occurs, the TCM will command previous range.
- While Diagnostic Response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- This DTC indicates the off-coming clutch being controlled by PCS1 is not released or released too slowly. Common causes include:
 - An obstruction in the C1 clutch exhaust circuit.
 - A defective PCS1 solenoid.
 - A stuck PCS1 regulator valve.
- PCS1 supplies hydraulic pressure to C1 clutch in first range through fourth ranges. Check the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
- PCS1 and PCS2 are “normally high” solenoids. PCS1 and PCS2 supply full hydraulic pressure when their coils are de-energized, and no output pressure when receiving maximum current from the TCM.
• If the condition is intermittent, connect Allison DOC™ diagnostic tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 — Intermittent wiring connection
 — Excessive vibration (driveline or engine torsionals)
 — Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

Test Description
The numbers below refer to step numbers on the diagnostic table.

1. This step tests for proper transmission fluid level.
2. This step tests for active diagnostic codes.
3. This step tests ignition voltage.
4. This step tests speed sensor readings.
5. This step tests for C1 clutch pressure from PCS1.
6. This step tests for evidence of clutch failure.
7. This step tests for stuck or sticking valves and damaged valve body gaskets.

DTC P2724 Pressure Control Solenoid 1 (PCS1) Stuck On

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Turn ON the ignition, leave engine OFF. 3. Record the failure records. 4. Clear the DTC. 5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records. NOTE: This DTC indicates that the TCM has detected that the off-going clutch did not release (clutch tie-up) following a shift. Did DTC P2724 return?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the DTC Failure Record data. 4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified value?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 5</td>
<td>Go to General Troubleshooting (Section 7)</td>
</tr>
<tr>
<td>5</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions. 2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display. Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to appropriate speed sensor DTC</td>
<td>Go to Step 6</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2724 Pressure Control Solenoid 1 (PCS1) Stuck On (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main and C1 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the failure records.
6. Read and record Main and C1 clutch pressures. Are the pressure readings within specified values in Appendix B?</td>
<td>Refer to Main and Clutch Pressure specifications in Appendix B</td>
<td>Go to Step 7</td>
<td>Go to Step 8</td>
</tr>
<tr>
<td>7</td>
<td>Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection. Are there signs of a clutch failure?</td>
<td></td>
<td>Go to Step 10</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>8</td>
<td>1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve bodies for stuck or sticking solenoid regulator valves and logic latch valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals. Was a valve body problem found and repaired?</td>
<td></td>
<td>Go to Step 11</td>
<td>Go to Step 9</td>
</tr>
<tr>
<td>9</td>
<td>Replace PCS1. Is the replacement complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris. If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual). Is the replacement complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine, and output speed sensor readings.
3. Drive the vehicle under normal operating conditions. Did the DTC return?</td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td></td>
<td>System OK</td>
</tr>
</tbody>
</table>
Circuit Description

Pressure Control Solenoid 1 (PCS1) is a normally open (N/O) solenoid used to apply the C1 clutch in first through fourth range. The TCM commands the solenoid OFF to produce hydraulic pressure in the clutch apply circuit. When PCS1 is commanded ON, the C1 clutch is released.

The TCM sends control current to PCS1 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS1 by switching PCS1 Low Side Driver (LSD) ON and OFF. Wire 136 completes the circuit between PCS1 and its LSD. DTC P2727 indicates that the TCM has detected an open condition in PCS1 electrical circuit. The open condition may exist in the high side (wire 171) or low side (wire 136).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P2727 is set when the TCM detects an open circuit on the PCS1 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2727 Pressure Control Solenoid 1 (PCS1) Control Circuit Open

Actions Taken When the DTC Sets
When DTC P2727 is active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2727 indicates an open in the electrical circuit for PCS1. In addition to PCS1, HSD2 also supplies power to PCS2, PCS3, and SS1. If DTC P2727 is accompanied by DTC P0964 (PCS2 open circuit) and/or DTC P0968 (PCS3 open circuit), the open is most likely in the high side of the circuit.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests the OEM harness for an excessive voltage drop caused by an open condition in either wire 171 or wire 136 of the OEM chassis harness.
6. This step tests for an open condition in the transmission internal harness.
7. This step tests for the proper PCS1 resistance.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2727 Pressure Control Solenoid 1 (PCS1) Control Circuit Open

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect an open condition in the PCS1 electrical circuit.
Did DTC P2727 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | **NOTE:** Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors.
3. Install J 47279 Transmission Breakout between the OEM and transmission 20-way connectors.
4. Turn ON the ignition, leave engine OFF.
5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command PCS1 ON.
6. Determine the voltage drop in the high side of the PCS1 circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 71 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 6 and isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.
7. Determine the voltage drop in the low side of the PCS1 circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 36 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 4 and isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.
NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness.
Did either high-side or low-side voltage drop exceed 0.5VDC? | | Go to Step 5 | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2727 Pressure Control Solenoid 1 (PCS1) Control Circuit Open (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Disconnect the OEM 20-way connector from J 47279 Transmission Breakout. Leave the transmission 20-way connector connected to breakout.
3. Using a digital multimeter (DVOM), measure the resistance between pin 4 and pin 6 of the transmission 20-way connector. Is the resistance within the specified value? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 10 | Go to Step 7 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Disconnect PCS1 from the internal wiring harness.
3. Using a DVOM, measure PCS1 resistance at pins A and B. Is resistance within the specified values? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness. Is the replacement complete? | | Go to Step 11 | |
| 9 | Replace PCS1. Is the replacement complete? | | Go to Step 11 | |
| 10 | NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records. Did the DTC return? | Begin the diagnosis again, Go to Step 1 | | System OK |

5–342 Copyright © 2005 General Motors Corp.
Circuit Description
Pressure Control Solenoid 1 (PCS1) is a normally open (N/O) solenoid used to apply the C1 clutch in first through fourth range. The TCM commands the solenoid OFF to produce hydraulic pressure in the clutch apply circuit. When PCS1 is commanded ON, the C1 clutch is released.

The TCM sends control current to PCS1 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS1 by switching PCS1 Low Side Driver (LSD) ON and OFF. Wire 136 completes the circuit between PCS1 and its LSD. DTC P2729 indicates that the TCM has detected a short-to-ground condition in the low side of PCS1 electrical circuit.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC
DTC P2729 is set when the TCM detects a short-to-ground in the PCS1 return circuit for more than 2 seconds.

Actions Taken When the DTC Sets
When DTC P2729 is active, the following conditions will occur:
- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2729 Pressure Control Solenoid 1 (PCS1) Control Circuit Low

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2729 indicates a short-to-ground in the electrical circuit for PCS1.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 136.
6. This step tests for the wire-to-wire shorts or a short-to-ground in the internal transmission harness.
DTC P2729 Pressure Control Solenoid 1 (PCS1) Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Monitor ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem.</td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC. 2. Start the engine and test drive the vehicle. 3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.). Did DTC P2729 return?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps. 1. Turn OFF the ignition. 2. Disconnect the TCM 80-way connector. 3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected. 4. Disconnect the transmission 20-way connector. 5. Inspect the routing of wire 136 in the chassis harness between the TCM and the transmission connector. 6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 36 and all other pins in the 80-way connector, and shorts-to-ground between pin 36 and chassis ground. Were any wire-to-wire shorts or shorts-to-ground wiring defects found?</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2729 Pressure Control Solenoid 1 (PCS1) Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 4 and all other pins in the 20-way connector, and shorts-to-ground between pin 4 and chassis ground.
NOTE: The resistance value between pins 8 and 6 will read normal solenoid resistance. The resistance value between pins 4 and 5, and between 4 and 9 will be twice normal solenoid resistance.
Were any wire-to-wire shorts, or shorts-to-ground found? | Go to Step 7 | Go to Step 10 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts, or shorts-to-ground.
Were any wire-to-wire shorts, or shorts-to-ground found? | Go to Step 8 | Go to Step 9 |
| 8 | Repair or replace the internal wiring harness.
Is the repair complete? | Go to Step 11 |
| 9 | Replace PCS1.
Is the replacement complete? | Go to Step 11 |
| 10 | **NOTE:** In most cases, the TCM is not at fault.
Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 12 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
Circuit Description

Pressure Control Solenoid 1 (PCS1) is a normally open (N/O) solenoid used to apply the C1 clutch in first through fourth range. The TCM commands the solenoid OFF to produce hydraulic pressure in the clutch apply circuit. When PCS1 is commanded ON, the C1 clutch is released.

The TCM sends control current to PCS1 from High Side Driver 2 (HSD2) via wire 171. HSD2 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS1 by switching PCS1 Low Side Driver (LSD) ON and OFF. Wire 136 completes the circuit between PCS1 and its LSD. DTC P2730 indicates that the TCM has detected a short-to-battery condition in the low side of PCS1 electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P2730 is set when the TCM detects a short-to-battery in the PCS1 return circuit for more than 2 seconds.

Actions Taken When the DTC Sets

When DTC P2730 is active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.
Diagnostic Trouble Codes (DTC)

DTC P2730 Pressure Control Solenoid 1 (PCS1) Control Circuit High

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P2730 indicates a short-to-battery in the electrical circuit for PCS1.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

- This step tests for the proper ignition voltage.
- This step tests for an active DTC.
- This step tests for wire-to-wire shorts between wire 136 and other wires in the OEM chassis harness.
- This step tests for the wire-to-wire shorts in the transmission internal harness.
DTC P2730 Pressure Control Solenoid 1 (PCS1) Control Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Start the engine.
 3. Record the failure records.
 4. Monitor ignition voltage.
 Is the voltage within the specified values? | 9–18V (12V TCM)
 18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem. |
| 3 | 1. Clear the DTC.
 2. Start the engine and test drive the vehicle.
 3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
 NOTE: This DTC is intended to detect short-to-battery condition in the PCS1 electrical circuit.
 Did DTC P2730 return? | | Go to Step 4 | Go to Diagnostic Aids |
| 4 | NOTE: Review Section 4—Wire Test Procedures before performing steps.
 1. Turn OFF the ignition.
 2. Disconnect the TCM 80-way connector.
 3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
 4. Disconnect the transmission 20-way connector.
 5. Inspect the routing of wire 171 in the chassis harness between the TCM and the transmission connector.
 6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 36 and all other pins in the 80-way connector.
 Were any wire-to-wire shorts found? | | Go to Step 5 | Go to Step 6 |
| 5 | NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
 Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
 Is the repair complete? | | Go to Step 11 | |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2730 Pressure Control Solenoid 1 (PCS1) Control Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td></td>
<td>Go to Step 7</td>
</tr>
<tr>
<td></td>
<td>2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.</td>
<td></td>
<td></td>
<td>Go to Step 10</td>
</tr>
<tr>
<td></td>
<td>3. Using a DVOM, test for wire-to-wire shorts between pin 4 and all other pins in the 20-way connector, and shorts-to-ground between pin 4 and chassis ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: The resistance value between pins 4 and 6 will read normal solenoid resistance. The resistance value between pins 4 and 5, between 4 and 9, and between 4 and 10 will be twice normal solenoid resistance.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Were any wire-to-wire shorts, or shorts-to-ground found?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. Remove the hydraulic control module assembly.</td>
<td>Refer to Solenoid Resistance Chart (Appendix K)</td>
<td>Go to Step 8</td>
<td>Go to Step 9</td>
</tr>
<tr>
<td></td>
<td>2. Inspect the internal harness for wire-to-wire shorts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Were any wire-to-wire shorts, or shorts-to-ground found?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Repair or replace the internal wiring harness.</td>
<td></td>
<td></td>
<td>Go to Step 11</td>
</tr>
<tr>
<td></td>
<td>Is the repair complete?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Replace PCS1.</td>
<td></td>
<td></td>
<td>Go to Step 11</td>
</tr>
<tr>
<td></td>
<td>Is the replacement complete?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.</td>
<td></td>
<td></td>
<td>Go to Step 11</td>
</tr>
<tr>
<td></td>
<td>Refer to TCM diagnostic procedure, Section 3–6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is Section 3–6 complete?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>In order to verify your repair:</td>
<td></td>
<td></td>
<td>System OK</td>
</tr>
<tr>
<td></td>
<td>1. Clear the DTC.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Drive the vehicle under conditions noted in failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did the DTC return?</td>
<td></td>
<td></td>
<td>Go to Step 1</td>
</tr>
</tbody>
</table>
Circuit Description

Pressure Control Solenoid 5 (PCS5) is a normally closed (N/C) solenoid used to apply the retarder solenoid (retarder units) or differential lock solenoid (3000 7-speed only). The TCM commands the solenoid ON to produce hydraulic pressure in the control circuit. When PCS5 is commanded OFF, the control circuit is deactivated.

The TCM sends control current to PCS5 from High Side Driver 3 (HSD3) via wire 131. HSD3 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS5 by switching PCS5 Low Side Driver (LSD) ON and OFF. Wire 115 completes the circuit between PCS5 and its LSD. DTC P2736 indicates that the TCM has detected an open condition in PCS5 electrical circuit. The open condition may exist in the high side (wire 131) or low side (wire 115).
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2736 Pressure Control Solenoid 5 (PCS5) Control Circuit Open

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC
DTC P2736 is set when the TCM detects an open circuit on the PCS5 return circuit for more than 2 seconds.

Actions Taken When the DTC Sets
When DTC P2736 is active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits retarder operation.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2736 indicates an open in the electrical circuit for PCS5. In addition to PCS5, HSD3 also supplies power to solenoids torque converter clutch (TCC) and SS2. If DTC P2736 is accompanied by DTC P0975 and P2761, the open is most likely in the high side of the circuit.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests the OEM harness for an excessive voltage caused by an open condition in either wire 131 or wire 115 of the OEM chassis harness.
6. This step tests for the proper PCS5 resistance.

DTC P2736 Pressure Control Solenoid 5 (PCS5) Control Circuit Open

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td>18–32V (24V TCM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Monitor ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the voltage within the specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine and test drive the vehicle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This DTC is intended to detect an open condition in PCS5 electrical circuit.

Did DTC P2736 return?
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2736 Pressure Control Solenoid 5 (PCS5) Control Circuit Open (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.</td>
<td></td>
<td></td>
<td>Go to Step 5</td>
</tr>
<tr>
<td></td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install J 47279 Transmission Breakout between the OEM and transmission 20-way connectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Turn ON the ignition. Leave engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command PCS5 ON.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Determine the voltage drop in the high side of the PCS5 circuit as follows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47275-1 TCM Overlay, measure voltage between pin 31 and an isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To measure PCS5 high-side voltage:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>— At J 47279-1 Transmission Overlay, measure voltage between RTDR FEED THRU-B and isolated ground (retarder units), OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Back probe pin B of the T-case 6-way Cannon connector using jumper wire kit J39197 or equivalent.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Measure voltage between T-case-B and isolated ground (3000 7-speed only).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Subtract the two voltage measurements to obtain the voltage drop in the circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Determine the voltage drop in the low side of the PCS5 circuit as follows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At J 47275-1 TCM Overlay, measure voltage between pin 15 and an isolated ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To measure PCS5 low-side voltage:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>— At J 47279-1 Transmission Overlay, measure voltage between RTDR FEED THRU-A and isolated ground (retarder units), OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Back probe pin B of the T-case 6-way Cannon connector using jumper wire kit J39197 or equivalent.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Measure voltage between T-case-B and isolated ground (3000 7-speed only).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Subtract the two voltage measurements to obtain the voltage drop in the circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness.

Did either high-side or low-side voltage drop exceed 0.5VDC?
Diagnostic Trouble Codes (DTC)

DTC P2736 Pressure Control Solenoid 5 (PCS5) Control Circuit Open (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition. 2. Disconnect the OEM PCS5 connector from J 47279 Transmission Breakout. 3. Using a DVOM, measure the resistance between pins A and B of the RTDR FEED THRU connector (retarder units) or T-case connector (3000 7-speed only). Is the resistance within the specified value?</td>
<td>Refer to Solenoid Resistance Chart (Appendix K)</td>
<td>Go to Step 8</td>
<td>Go to Step 7</td>
</tr>
<tr>
<td>7</td>
<td>1. Remove the retarder valve body (retarder units) or T-case (3000 7-speed only). 2. Replace PCS5. Is the replacement complete?</td>
<td></td>
<td>Go to Step 9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td></td>
<td>Go to Step 9</td>
</tr>
<tr>
<td>9</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under conditions noted in failure records. Did the DTC return?</td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2738 Pressure Control Solenoid 5 (PCS5) Control Circuit Low

Circuit Description

Pressure Control Solenoid 5 (PCS5) is a normally closed (N/C) solenoid used to apply the retarder solenoid (retarder units) or differential lock solenoid (3000 7-speed only). The TCM commands the solenoid ON to produce hydraulic pressure in the control circuit. When PCS5 is commanded OFF, the control circuit is deactivated.

The TCM sends control current to PCS5 from High Side Driver 3 (HSD3) via wire 131. HSD3 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS5 by switching PCS5 Low Side Driver (LSD) ON and OFF. Wire 115 completes the circuit between PCS5 and its LSD. DTC P2738 indicates that the TCM has detected a short-to-ground condition in the low side of PCS5 electrical circuit.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2738 Pressure Control Solenoid 5 (PCS5) Control Circuit Low

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC
DTC P2738 is set when the TCM detects a short-to-ground in the PCS5 return circuit for more than 2 seconds.

Actions Taken When the DTC Sets
When DTC P2738 is active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM allows operation in second through sixth range, and in Neutral and Reverse.
- The TCM inhibits retarder and TCC operation.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2738 indicates a short-to-ground in the electrical circuit for PCS5.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
4. Use Allison DOC™ For PC–Service Tool.
5. solenoid test function to command the solenoid ON and OFF.
6. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.

Test Description
The numbers below refer to step numbers on the diagnostic table.

- 2. This step tests for the proper ignition voltage.
- 3. This step tests for an active DTC.
- 4. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 115.
- 6. This step tests for short-to-ground in the internal solenoid circuit.

DTC P2738 Pressure Control Solenoid 5 (PCS5) Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Monitor ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem</td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC. 2. Start the engine and test drive the vehicle. 3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.). Did DTC P2738 return?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
</tbody>
</table>

NOTE: This DTC is intended to detect a short-to-ground condition in the PCS5 electrical circuit.
NOTE: Review Section 4—Wire Test Procedures before performing steps.

1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the retarder feedthrough or T-case connector.
5. Inspect the routing of wire 115 in the chassis harness between the TCM and the PCS5 connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 15 and all other pins in the 80-way connector, and shorts-to-ground between pin 15 and chassis ground.

Were any wire-to-wire shorts or shorts-to-ground wiring defects found?

NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.

Coordinate with the vehicle OEM to repair or replace the vehicle wiring.

Is the repair complete?

NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.

Refer to TCM diagnostic procedure, Section 3–6.

Is Section 3–6 complete?

In order to verify your repair:

1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records.

Did the DTC return?

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 4 | NOTE: Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the retarder feedthrough or T-case connector.
5. Inspect the routing of wire 115 in the chassis harness between the TCM and the PCS5 connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 15 and all other pins in the 80-way connector, and shorts-to-ground between pin 15 and chassis ground.
Were any wire-to-wire shorts or shorts-to-ground wiring defects found? | Go to Step 5 | Go to Step 6 |
| 5 | NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | Go to Step 9 |
| 6 | 1. Turn OFF the ignition.
2. Using a DVOM, test for shorts-to-ground between pin A of retarder feed through or T-case connector and chassis ground.
Were any shorts-to-ground found? | Go to Step 7 | Go to Step 8 |
| 7 | 1. Remove the retarder valve body (retarder units) or T-case (3000 7-speed only).
2. Replace PCS5.
Is the replacement complete? | Go to Step 9 |
| 8 | NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 9 |
| 9 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records.
Did the DTC return? | Begin the diagnosis again.
Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2739 Pressure Control Solenoid 5 (PCS5) Control Circuit High

Circuit Description
Pressure Control Solenoid 5 (PCS5) is a normally closed (N/C) solenoid used to apply the retarder solenoid (retarder units) or differential lock solenoid (3000 7-speed only). The TCM commands the solenoid ON to produce hydraulic pressure in the control circuit. When PCS5 is commanded OFF, the control circuit is deactivated.

The TCM sends control current to PCS5 from High Side Driver 3 (HSD3) via wire 131. HSD3 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS5 by switching PCS5 Low Side Driver (LSD) ON and OFF. Wire 115 completes the circuit between PCS5 and its LSD. DTC P2739 indicates that the TCM has detected a short-to-battery condition in the low side of PCS5 electrical circuit.

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2739 Pressure Control Solenoid 5 (PCS5) Control Circuit High

Conditions for Setting the DTC
DTC P2739 is set when the TCM detects a short-to-battery in the PCS5 return circuit for more than 2 seconds.

Actions Taken When the DTC Sets
When DTC P2739 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits retarder operation.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ diagnostic tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2739 indicates a short-to-battery in the electrical circuit for PCS5.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
Diagnostic Trouble Codes (DTC)

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts between wire 115 and other wires in the OEM chassis harness.
6. This step tests for proper PCS5 resistance.

DTC P2739 Pressure Control Solenoid 5 (PCS5) Control Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage. Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).
NOTE: This DTC is intended to detect a short-to-battery condition in the PCS5 electrical circuit.
Did DTC P2739 return? | Go to Step 4 | Go to Diagnostic Aids |
| 4 | **NOTE: Review Section 4—Wire Test Procedures before performing steps.**
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the retarder feedthrough or T-case connector.
5. Inspect the routing of wires 115 and 131 in the chassis harness between the TCM and the PCS5 connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 15 and all other pins in the 80-way connector.
Were any wire-to-wire shorts found? | Go to Step 5 | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2739 Pressure Control Solenoid 5 (PCS5) Control Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 9</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Using a DVOM, measure resistance across pins A and B of PCS5. Is resistance within the correct values? | Refer to Solenoid Resistance Chart (Appendix K) | **Go to Step 8** | **Go to Step 7** |
| 7 | 1. Remove the retarder valve body (retarder units) or T-case (3000 7-speed only).
2. Replace PCS5. Is replacement complete? | | **Go to Step 9** |
| 8 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | | **Go to Step 9** |
| 9 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records. Did the DTC return? | | **Begin the diagnosis again. Go to Step 1** | **System OK** |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2740 Retarder Oil Temperature Hot

Refer to Retarder Hydraulic Schematic

Circuit Description
During retarder operation, the retarder housing is filled and pressurized with transmission fluid. This fluid acts on the vaned rotor assembly and impedes rotation of the transmission output shaft, converting a significant amount of rotational energy into heat in the process. Additionally, when the retarder is activated the retarder control valve supplies main pressure to the large autoflow valve in the retarder housing. The autoflow valve is repositioned during retarder operation to direct hot fluid in the retarder cavity to the transmission oil cooler. The retarder temperature sensor monitors fluid temperature in the retarder-housing cavity.

Conditions for Running the DTC
The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

Conditions for Setting the DTC
The TCM detects retarder oil temperature greater than 165°C (330°F) for more than 10 seconds.

Actions Taken When the DTC Sets
When DTC P2740 is active, the following conditions will occur:

- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.

Conditions for Clearing the DTC/CHECK TRANS Light

- The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.
- The TCM cancels the DTC default actions when the fault no longer exists and the DTC passes test.

Diagnostic Aids

- The Allison DOC™ For PC–Service Tool retarder oil temperature should rise steadily during retarder operation and drop to near sump temp when the retarder is deactivated.
- A stuck autoflow valve can cause overheating in retarder-equipped transmissions. Refer to Section 8 for general troubleshooting of performance complaints.
- Other possible causes include:
 - Prolonged retarder use
 - Low fluid level
 - High fluid level
 - A retarder apply system that allows the throttle and retarder to be applied simultaneously
 - A cooler that is inadequately sized for the retarder.
Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

- 2. This step tests for proper transmission fluid level and condition.
- 3. This step monitors the status of DTC P2740.
- 4. This step verifies which condition has set the DTC P2740.
- 5. This step tests for proper resistance value in entire circuit.
- 6. This step tests the resistance value of the retarder temperature sensor.
- 10. This step tests the condition of the vehicle cooling system.
- 11. This step tests for proper cooler pressure drop.
- 12. This step tests for deficiencies with the transmission oil cooler and cooling lines.

DTC P2740 Retarder Oil Temperature Hot

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Install a temperature gauge at the retarder outlet port. 3. Turn ON the ignition. 4. Record the failure records. 5. Clear the DTCs. 6. Drive the vehicle and monitor retarder temperature on Allison DOC™ For PC–Service Tool. Did DTC P2740 return?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>Compare the manual temperature reading to the Allison DOC™ For PC–Service Tool retarder temperature when the DTC is set. Does the manual temperature reading confirm the retarder oil temperature is actually hot when DTC P2740 is logged?</td>
<td></td>
<td>Go to Step 10</td>
<td>Go to Step 5</td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P2740 Retarder Oil Temperature Hot (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 5 | **1. Turn OFF the ignition.**
2. Disconnect the 80-way connector from the TCM.
3. Connect J 47425 TCM Breakout to the OEM connector. Leave the TCM disconnected from J 47275 TCM Breakout.
4. Using a DVOM at J 47275-1 TCM Overlay, measure the resistance between pin 75 and 58.
5. Refer to Appendix Q and find the retarder oil temperature that corresponds to the resistance value determined in the preceding step.
Does the value listed in Appendix Q match the manual retarder temperature reading? | Refer to Appendix Q | **Yes** | **No** |
| 6 | **1. Disconnect the retarder temperature sensor connector.**
2. Using a DVOM, measure resistance at retarder temp sensor pins A and B.
3. Refer to Appendix Q and find the retarder oil temperature that corresponds to the resistance value determined in the preceding step.
Does the value listed in Appendix Q match the manual retarder temperature reading? | Refer to Appendix Q | **Yes** | **No** |
| 7 | **NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.**
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | | | **Go to Step 14** |
| 8 | Replace the retarder temperature sensor.
Is the replacement complete? | | | **Go to Step 14** |
| 9 | **NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.**
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | | | **Go to Step 14** |
Diagnostic Trouble Codes (DTC)

DTC P2740 Retarder Oil Temperature Hot (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| **10** | 1. Inspect the engine cooling system for the following conditions:
• Air flow restrictions
• Air flow blockage
• System fluid level and condition
• Debris
2. Inspect the transmission cooling system for the following conditions:
• Air flow restrictions
• Air flow blockage
• System fluid level and condition
• Damaged cooler lines and hoses
Did you find and correct the condition? | | | Go to Step 14 | Go to Step 11 |
| **11** | 1. Install pressure gauges in the “to” and “from” cooler lines.
2. Start the engine.
3. Subtract the “from cooler” pressure from the “to cooler” pressure to obtain pressure drop across the transmission oil cooler.
4. Verify cooler pressure drop satisfies limits of Table 6–16 (4000 Product Family) or Table 6–17 (3000 Product Family).
Is cooler pressure drop within specified values? | Refer to Table 6–18 or 6–19 | Go to Diagnostic Aids | Go to Step 12 |
| **12** | Inspect the transmission cooling system for the following conditions:
• Transmission cooler lines reversed.
• Cooler lines restricted.
• Improperly sized cooler fittings.
• Inadequately sized cooler.
Did you find any problems with the vehicle’s cooling system? | | Go to Step 13 | Go to Diagnostic Aids |
| **13** | **NOTE:** The vehicle OEM has responsibility for all vehicle cooling system repairs. Cooling system repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinating with the vehicle OEM to repair the vehicle cooling system.
Is the repair complete? | | Go to Step 13 | Go to Diagnostic Aids |
| **14** | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor retarder temperature.
3. Drive the vehicle under normal operating conditions. Watch for significant change in temperature.
Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2740 Retarder Oil Temperature Hot

External Hydraulic Circuit Characteristics

Basic, PTO, 93°C (200°F) Sump Temperature

<table>
<thead>
<tr>
<th>Table 6–16. 4000 Product Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVERTER OPERATION</td>
</tr>
<tr>
<td>MAXIMUM COOLER FLOW AT MINIMUM PRESSURE DROP</td>
</tr>
<tr>
<td>Input rpm</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>1800</td>
</tr>
<tr>
<td>2100</td>
</tr>
<tr>
<td>2300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6–17. 3000 Product Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVERTER OPERATION</td>
</tr>
<tr>
<td>MAXIMUM COOLER FLOW AT MINIMUM PRESSURE DROP</td>
</tr>
<tr>
<td>Input rpm</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>1400</td>
</tr>
<tr>
<td>1600</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2400</td>
</tr>
<tr>
<td>3200</td>
</tr>
</tbody>
</table>
CONVERTER OPERATION

MAXIMUM ALLOWABLE PRESSURE DROP

<table>
<thead>
<tr>
<th>Input rpm</th>
<th>Flow L/s</th>
<th>GPM</th>
<th>kPa</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.10</td>
<td>1.6</td>
<td>10.0</td>
<td>1.5</td>
</tr>
<tr>
<td>800</td>
<td>0.23</td>
<td>3.5</td>
<td>40.0</td>
<td>5.8</td>
</tr>
<tr>
<td>1200</td>
<td>0.45</td>
<td>7.1</td>
<td>159.0</td>
<td>23.1</td>
</tr>
<tr>
<td>1400</td>
<td>0.57</td>
<td>9.0</td>
<td>252.0</td>
<td>36.6</td>
</tr>
<tr>
<td>1600</td>
<td>0.67</td>
<td>10.6</td>
<td>338.0</td>
<td>49.0</td>
</tr>
<tr>
<td>2000</td>
<td>0.80</td>
<td>12.7</td>
<td>481.0</td>
<td>69.8</td>
</tr>
<tr>
<td>2400</td>
<td>0.85</td>
<td>13.5</td>
<td>549.0</td>
<td>79.6</td>
</tr>
<tr>
<td>3200</td>
<td>0.85</td>
<td>13.5</td>
<td>549.0</td>
<td>79.6</td>
</tr>
</tbody>
</table>

LOCKUP OPERATION

MAXIMUM COOLER FLOW AT MINIMUM PRESSURE DROP

<table>
<thead>
<tr>
<th>Input rpm</th>
<th>Flow L/s</th>
<th>GPM</th>
<th>kPa</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.10</td>
<td>1.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>800</td>
<td>0.23</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1200</td>
<td>0.50</td>
<td>7.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1400</td>
<td>0.63</td>
<td>10.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1600</td>
<td>0.77</td>
<td>12.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0.95</td>
<td>15.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2400</td>
<td>1.12</td>
<td>17.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2800</td>
<td>1.22</td>
<td>19.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3200</td>
<td>1.28</td>
<td>20.3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LOCKUP OPERATION

MAXIMUM ALLOWABLE PRESSURE DROP

<table>
<thead>
<tr>
<th>Input rpm</th>
<th>Flow L/s</th>
<th>GPM</th>
<th>kPa</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.10</td>
<td>1.6</td>
<td>5.0</td>
<td>0.7</td>
</tr>
<tr>
<td>800</td>
<td>0.23</td>
<td>3.7</td>
<td>46.0</td>
<td>6.7</td>
</tr>
<tr>
<td>1200</td>
<td>0.48</td>
<td>7.6</td>
<td>148.0</td>
<td>21.5</td>
</tr>
<tr>
<td>1400</td>
<td>0.62</td>
<td>9.8</td>
<td>247.0</td>
<td>35.8</td>
</tr>
<tr>
<td>1600</td>
<td>0.73</td>
<td>11.6</td>
<td>346.0</td>
<td>50.2</td>
</tr>
<tr>
<td>2000</td>
<td>0.90</td>
<td>14.3</td>
<td>561.0</td>
<td>81.4</td>
</tr>
<tr>
<td>2400</td>
<td>1.07</td>
<td>17.0</td>
<td>737.0</td>
<td>106.9</td>
</tr>
<tr>
<td>2800</td>
<td>1.10</td>
<td>17.4</td>
<td>770.0</td>
<td>111.7</td>
</tr>
<tr>
<td>3200</td>
<td>1.10</td>
<td>17.4</td>
<td>791.0</td>
<td>114.7</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2742 Retarder Oil Temperature Sensor Circuit — Low Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

PWM THROTTLE SOURCE

THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR

TO RETARDER CONTROL DEVICES

RETARDER REQUEST SENSOR (RESISTANCE MODULE)

TCM

RETARDER REQUEST SIGNAL
5V SENSOR VOLTAGE
THROTTLE POSITION OR RTDR PRESSURE SIGNAL
ANALOG RETURN

ENGINE TEMP
ENGINE WATER TEMP

TRANSMISSION

ANALOG RETURN
OIL LEVEL
HALL EFFECT
SUMP TEMP
PS1
NC

WIRE 156
WIRE 112
WIRE 144
WIRE 158
WIRE 175
WIRE 135
WIRE 158
WIRE 112
WIRE 116
WIRE 154
WIRE 177

* NORMALLY CLOSED

Copyright © 2005 General Motors Corp.
DTC P2742 Retarder Oil Temperature Sensor Circuit — Low Input

Circuit Description
A retarder oil temperature sensor monitors retarder cavity fluid temperature. The sensor consists of a thermistor that varies its resistance value based on the temperature of the fluid in the retarder housing. The Transmission Control Module (TCM) supplies a 5V reference voltage signal into a voltage-sensing network that is connected to one side of the retarder temperature sensor via wire 175. The other side of the temp sensor is connected to the TCM analog ground wire 158.

The resistance value of the retarder temperature sensor determines the voltage drop in the retarder temperature sensor circuit. As resistance changes, the voltage drop across the thermistor will also change varying the sensor input voltage on wire 175. When retarder fluid is cold the sensor resistance is high, which produces a large voltage drop across the temp sensor circuit. The TCM, therefore, detects a high sensor input voltage during cold conditions. As the retarder fluid temperature warms to normal operating temperature, the resistance decreases producing a smaller voltage drop across the temp sensor. As a result, the TCM detects a lower sensor input voltage on wire 175 during hot oil conditions. The TCM uses retarder temperature information to restrict retarder operation and reduce fluid temperature when a retarder over-heat condition is detected.

Conditions for Running the DTC
The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

Conditions for Setting the DTC
The TCM detects retarder oil temperature greater than a calibrated value for more than 2.5 seconds.

NOTE: The TCM is detecting voltage. An unusually low input voltage implies low thermistor resistance, which corresponds to an illogically high retarder oil temperature measurement.

Actions Taken When the DTC Sets
When DTC P2742 is active, the following conditions will occur:
• The TCM does not illuminate the CHECK TRANS light.
• DTC is stored in TCM history.
• TCM uses default retarder temperature values.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• DTC P2742 may be caused by a short-to-ground on wire 175.
• Review Appendix A for diagnosing intermittent electrical conditions.
• Inspect the wiring for poor electrical connections at the TCM and retarder temperature sensor. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
DIAGNOSTIC TROUBLE CODES (DTC)

- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle and operate the retarder in order to experience a fault.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level and condition.
3. This step verifies which condition has set the DTC P2742.
4. This step tests for the proper 5V reference voltage at TCM.
5. This step tests for wire-to-wire shorts or shorts-to-ground on wire 175 (Retarder Oil Temp).
6. This step tests for proper system circuit resistance value.
7. This step tests the resistance value of the retarder temp sensor.

DTC P2742 Retarder Oil Temperature Sensor Circuit—Low Input

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to appropriate mechanic’s tips).</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. With the engine OFF, turn the ignition to the ON position.
 3. Record the failure records.
 4. Clear the DTCs.
 5. Monitor the retarder temperature on Allison DOC™ For PC–Service Tool.
 6. Drive the vehicle and observe Allison DOC™ For PC–Service Tool for an unrealistically high temperature condition.
 Is the Allison DOC™ For PC–Service Tool retarder oil temperature greater than 178°C (352°F)? | >178°C (352°F) | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Turn OFF the ignition.
 2. Install J 47275 TCM Breakout at the TCM.
 3. Disconnect the retarder temp sensor connector.
 4. Turn ON the ignition.
 5. At J 47275-1 TCM Overlay, connect a DVOM and measure voltage between pins 75 and 58.
 Is the voltage within the specified value? | 4.75 to 5.0V | Go to Step 6 | Go to Step 5 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2742 Retarder Oil Temperature Sensor Circuit—Low Input (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Disconnect the retarder temp sensor connector, if not disconnected in Step 4.
4. Using a DVOM at J 47275-1 TCM Overlay, test for pin-to-pin shorts, or shorts-to-ground on wire 175.
Were any wiring defects found? | Refer to Step 8 | Go to Step 8 | Go to Step 10 |
| 6 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Reconnect the retarder temp sensor connector.
4. At J 47275-1 TCM Overlay connect a DVOM, measure the resistance between pins 75 and 58.
Is the resistance within the specified value? | Refer to Appendix Q | Go to Diagnostic Aids | Go to Step 7 |
| 7 | 1. Disconnect the retarder temp sensor connector.
2. Using a DVOM, measure resistance between pins A and B of the retarder temp sensor.
Is the resistance within the specified value? | Refer to Appendix Q | Go to Step 8 | Go to Step 9 |
| 8 | NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by distributors and dealers are not covered by warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | Go to Step 11 | |
| 9 | Replace the retarder temperature sensor.
Is the replacement complete? | Go to Step 11 | |
| 10 | NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor retarder temperature.
3. Drive the vehicle under normal operating conditions. Watch for significant change in temperature.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2743 Retarder Oil Temperature Sensor Circuit—High Input

END VIEW OF 20-WAY CONNECTOR

END VIEW OF 80-WAY CONNECTOR

TO RETARDER CONTROL DEVICES

- RETARDER REQUEST SENSOR (RESISTANCE MODULE)
 - PWM THROTTLE SOURCE
 - THROTTLE POSITION SENSOR (TPS) OR ELECTRONIC BRAKING (EBS) RTDR PRESSURE SENSOR
 - TRANSMISSION
 - OIL LEVEL
 - HALL EFFECT
 - SUMP TEMP
 - PS1
 - *NORMALLY CLOSED

TCM
- RETARDER REQUEST SIGNAL
- 5V SENSOR VOLTAGE
- THROTTLE POSITION OR RTDR PRESSURE SIGNAL
- ANALOG RETURN
- RETARDER TEMP
- ENGINE TEMP
- ENGINE WATER TEMP
- OIL LEVEL SENSOR
- SUMP TEMP
- PS1 DIAGNOSTIC PRESSURE SWITCH

V0909.01.00
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2743 Retarder Oil Temperature Sensor Circuit—High Input

Circuit Description
A retarder oil temperature sensor monitors retarder cavity fluid temperature. The sensor consists of a thermistor that varies its resistance value based on the temperature of the fluid in the retarder housing. The Transmission Control Module (TCM) supplies a 5V reference voltage signal into a voltage-sensing network that is connected to one side of the retarder temperature sensor via wire 175. The other side of the temperature sensor is connected to the TCM analog ground wire 158.

The resistance value of the retarder temperature sensor determines the voltage drop in the retarder temperature sensor circuit. As resistance changes, the voltage drop across the thermistor will also change varying the sensor input voltage on wire 175. When retarder fluid is cold the sensor resistance is high, which produces a large voltage drop across the temp sensor circuit. The TCM, therefore, detects a high sensor input voltage during cold conditions. As the retarder fluid temperature warms to normal operating temperature, the resistance decreases producing a smaller voltage drop across the temp sensor. As a result, the TCM detects a lower sensor input voltage on wire 175 during hot oil conditions.

Conditions for Running the DTC
The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

Conditions for Setting the DTC
The TCM detects retarder oil temperature less than or equal to a calibrated value for more than 2.5 seconds.

NOTE: The TCM is detecting voltage. A high input voltage implies high thermistor resistance, which corresponds to an extremely cold retarder oil temperature measurement.

Actions Taken When the DTC Sets
When DTC P2743 is active, the following conditions will occur:
• The TCM does not illuminate the CHECK TRANS light.
• DTC is stored in TCM history.
• TCM uses default retarder temperature values.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
• DTC P2743 may be caused by an open in wire 175 or 158.
• DTC P2743 may be caused by a short-to-battery on wire 175. If DTC P2743 is accompanied by a DTC P0713 and/or P2185, the problem is likely a short-to-battery on wire 154, wire 135, or wire 175.
• Review Appendix A for diagnosing intermittent electrical fault conditions.
• Inspect the wiring for poor electrical connections at the TCM and retarder temp sensor. Look for the following conditions:
 — A bent terminal
 — A backed-out terminal
 — A damaged terminal
 — Poor terminal tension
 — A chafed wire
 — A broken wire inside the insulation.
• When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
• You may have to drive the vehicle in order to experience a fault.

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level and condition.
3. This step verifies which condition has set the DTC P2743.
4. This step tests for the proper 5V reference voltage at TCM.
5. This step tests for wire-to-wire shorts, shorts-to-ground, or an open on wire 175.
6. This step tests for proper system circuit resistance value.
7. This step tests the resistance value of the internal TFT sensor.

DTC P2743 Retarder Oil Temperature Sensor Circuit—High Input

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
2. With the engine OFF, turn the ignition to the ON position.
3. Record the failure records.
4. Clear the DTCs.
5. Monitor the retarder temperature on Allison DOC™ For PC–Service Tool.
6. Drive the vehicle and observe Allison DOC™ For PC–Service Tool for an unrealistically low temperature condition.
Is the Allison DOC™ For PC–Service Tool transmission fluid temperature less than –45°C (–49°F)? | <–45°C (–49°F) | Go to Step 4 | Go to Diagnostic Aids |
| 4 | 1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout at the TCM.
3. Disconnect the retarder temp sensor connector.
4. Turn ON the ignition.
5. At J 47275-1 TCM Overlay connect a DVOM and select the volts-DC scale.
6. Measure voltage between pin 75 and an isolated ground.
Is the voltage within the specified value? | 4.75 to 5.0V | Go to Step 6 | Go to Step 5 |
DTC P2743 Retarder Oil Temperature Sensor Circuit—High Input (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Disconnect the retarder temperature sensor, if not disconnected in Step 4.
4. Disconnect the transmission 20-way connector and engine coolant temperature sensor.
5. Using a DVOM at J 47275-1 TCM Overlay, test for opens in wire 175 and wire 112.
6. Also test for wire-to-wire shorts, or shorts-to-battery on wire 135, wire 154, or wire 175. Were any wiring defects found? | Go to Step 8 | Go to Step 10 |
| 6 | 1. Turn OFF the ignition.
2. Disconnect the TCM from the J 47275 TCM Breakout. Leave the OEM-side connected.
3. Reconnect the transmission 20-way connector.
4. At J 47275-1 TCM Overlay connect a DVOM, measure the resistance at pin 75 and 58. Is the resistance within the specified value? | Refer to Appendix Q | Go to Diagnostic Aids | Go to Step 7 |
| 7 | 1. Disconnect the retarder temp sensor connector.
2. Using a DVOM, measure resistance between pins A and B of the retarder temp sensor. Is the resistance within the specified value? | Refer to Appendix Q | Go to Step 8 | Go to Step 9 |
| 8 | *NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.*
Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete? | Go to Step 11 |
| 9 | Replace the retarder temperature sensor. Is the replacement complete? | Go to Step 11 |
| 10 | *NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.*
Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | Go to Step 11 |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor retarder temperature.
3. Drive the vehicle under normal operating conditions. Watch for significant change in temperature. Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2761 TCC PCS Control Circuit Open

Circuit Description

Torque Converter Clutch Pressure Control Solenoid (TCC) is a normally closed (N/C) solenoid used to apply the torque converter clutch when specific engine and turbine speed conditions are met. The TCM commands the solenoid ON to produce hydraulic pressure in the torque converter clutch apply circuit. When solenoid TCC is commanded OFF, torque converter clutch pressure is released.

The TCM sends control current to solenoid TCC from High Side Driver 3 (HSD3) via wire 131. HSD3 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to TCC by switching TCC’s Low Side Driver (LSD) ON and OFF. Wire 137 completes the circuit between TCC and its LSD. DTC P2761 indicates that the TCM has detected an open condition in solenoid TCC’s electrical circuit. The open condition may exist in the high side (wire 131) or low side (wire 137).
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2761 TCC PCS Control Circuit Open

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC
DTC P2761 is set when the TCM detects an open circuit on the TCC solenoid return circuit for more than 2 seconds.

Actions Taken When the DTC Sets
When DTC P2761 is active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC operation.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2761 indicates an open in the electrical circuit for the TCC solenoid. In addition to TCC, HSD3 also supplies power to PCS5 and SS2. If DTC P2761 is accompanied by DTCs P0975 and P2736, the open is most likely in the high side of the circuit.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
Diagnostic Trouble Codes (DTC)

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

1. This step tests for the proper ignition voltage.
2. This step tests for an active DTC.
4. This step tests the OEM harness for an excessive voltage drop caused by an open condition in either wire 131 or wire 137 of the OEM chassis harness.
6. This step tests for an open condition in the transmission internal harness.
7. This step tests for the proper TCC solenoid resistance.

DTC P2761 TCC PCS Control Circuit Open

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Monitor ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem</td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC. 2. Start the engine and test drive the vehicle. 3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
</tbody>
</table>

NOTE: This DTC is intended to detect an open condition in the TCC solenoid electrical circuit.

Did DTC P2761 return?
NOTE: Review Section 4—Wire Test Procedures before performing steps.

1. Turn OFF the ignition.
2. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors.
3. Install J 47279 Transmission Breakout between the OEM and transmission 20-way connectors.
4. Turn ON the ignition, leave engine OFF.
5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command solenoid TCC ON.

6. Determine the voltage drop in the high side of the TCC circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 31 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 11 and isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.

7. Determine the voltage drop in the low side of the TCC circuit as follows:
 • At J 47275-1 TCM Overlay, measure voltage between pin 37 and an isolated ground.
 • At J 47279-1 Transmission Overlay, measure voltage between pin 12 and isolated ground.
 • Subtract the two voltage measurements to obtain the voltage drop in the circuit.

NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness.

Did either high-side or low-side voltage drop exceed 0.5VDC?

NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.

Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete?
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2761 TCC PCS Control Circuit Open (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Disconnect the OEM 20-way connector from J 47279 Transmission Breakout. Leave the transmission 20-way connector connected to the breakout.
3. Using a digital multimeter (DVOM), measure the resistance between pin 11 and pin 12 in the transmission 20-way connector.
Is the resistance within the specified value? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 10 | Go to Step 7 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Disconnect solenoid TCC from the internal wiring harness.
3. Using a DVOM, measure solenoid TCC resistance at pins A and B.
Is resistance within the specified values? | Refer to Solenoid Resistance Chart (Appendix K) | Go to Step 8 | Go to Step 9 |
| 8 | Replace the internal wiring harness.
Is the replacement complete? | | Go to Step 11 | |
| 9 | Replace solenoid TCC.
Is the replacement complete? | | Go to Step 11 | |
| 10 | **NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.**
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under normal operating conditions. Watch for significant change in temperature.
Did the DTC return? | | | System OK |

Begin the diagnosis again.
Go to Step 1
Circuit Description

Torque Converter Clutch Pressure Control Solenoid (TCC) is a normally closed (N/C) solenoid used to apply the torque converter clutch when specific engine and turbine speed conditions are met. The TCM commands the solenoid ON to produce hydraulic pressure in the torque converter clutch apply circuit. When solenoid TCC is commanded OFF, torque converter clutch pressure is released.

The TCM sends control current to solenoid TCC from High Side Driver 3 (HSD3) via wire 131. HSD3 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to TCC by switching TCC’s Low Side Driver (LSD) ON and OFF. Wire 137 completes the circuit between TCC and its LSD. DTC P2763 indicates that the TCM has detected a short-to-battery condition in the low side of solenoid TCC’s electrical circuit.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2763 TCC PCS Control Circuit High

Conditions for Running the DTC
- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC
DTC P2763 is set when the TCM detects a short-to-battery in the TCC solenoid return circuit for more than 2 seconds.

Actions Taken When the DTC Sets
When DTC P2763 is active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC operation.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2763 indicates a short-to-battery in the electrical circuit for the TCC solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter, if available)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
4. Using Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts in wire 137.
6. This step tests for the wire-to-wire shorts in the internal transmission harness.

DTC P2763 TCC PCS Control Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Monitor ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem</td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC. 2. Start the engine and test drive the vehicle. 3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
</tbody>
</table>

NOTE: This DTC is intended to detect a short-to-battery condition in the TCC solenoid electrical circuit.

Did DTC P2763 return?
Diagnostic Trouble Codes (DTC)

DTC P2763 TCC PCS Control Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the transmission 20-way connector.
5. Inspect the routing of wire 137 in the chassis harness between the TCM and the transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 37 and all other pins in the 80-way connector, and shorts-to-ground between pin 37 and chassis ground.</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 12 and all other pins in the 20-way connector.</td>
<td></td>
<td>Go to Step 7</td>
<td>Go to Step 10</td>
</tr>
<tr>
<td>7</td>
<td>1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts.</td>
<td></td>
<td>Go to Step 8</td>
<td>Go to Step 9</td>
</tr>
<tr>
<td>8</td>
<td>Repair or replace the internal wiring harness.</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Replace solenoid TCC.</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DTC P2763 TCC PCS Control Circuit High (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under normal operating conditions. Did the DTC return?</td>
<td></td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2764 TCC PCS Control Circuit Low

Circuit Description

Torque Converter Clutch Pressure Control Solenoid (TCC) is a normally closed (N/C) solenoid used to apply the torque converter clutch when specific engine and turbine speed conditions are met. The TCM commands the solenoid ON to produce hydraulic pressure in the torque converter clutch apply circuit. When solenoid TCC is commanded OFF, torque converter clutch pressure is released.

The TCM sends control current to solenoid TCC from High Side Driver 3 (HSD3) via wire 131. HSD3 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to TCC by switching TCC’s Low Side Driver (LSD) ON and OFF. Wire 137 completes the circuit between TCC and its LSD. DTC P2764 indicates that the TCM has detected a short-to-ground condition in the low side of solenoid TCC’s electrical circuit.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2764 TCC PCS Control Circuit Low

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P2764 is set when the TCM detects a short-to-ground in the TCC solenoid return circuit for more than 2 seconds.

Actions Taken When the DTC Sets

When DTC P2764 is active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM allows operation in second through sixth range, and Neutral and Reverse.
- The TCM inhibits TCC operation.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P2764 indicates a short-to-ground in the electrical circuit for the TCC solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter)—measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once. Connect the RED test lead to the solenoid...
DIAGNOSTIC TROUBLE CODES (DTC)

low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.

3. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
4. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 137.
6. This step tests for the wire-to-wire shorts in the transmission internal harness.

DTC P2764 TCC PCS Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td></td>
<td>Go to Step 2</td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Monitor ignition voltage.
Is the voltage within the specified values? | 9–18V (12V TCM)
18–32V (24V TCM) | Go to Step 3 | Resolve voltage problem |
| 3 | 1. Clear the DTC.
2. Start the engine and test drive the vehicle.
3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.). | | | Go to Step 4 |

NOTE: This DTC is intended to detect a short-to-ground condition in the TCC solenoid electrical circuit.

Did DTC P2764 return?
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2764 TCC PCS Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 8-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.
4. Disconnect the transmission 20-way connector.
5. Inspect the routing of wire 131 and wire 137 in the chassis harness between the TCM and the transmission connector.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 37 and all other pins in the 80-way connector, and shorts-to-ground between pin 37 and chassis ground.
7. Test wire 131 for an intermittent short. Refer to Diagnostic Aids, Bullet 5 for the correct procedure. Were any wire-to-wire shorts or short-to-ground found?</td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition.
2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected.
3. Using a DVOM, test for wire-to-wire shorts between pin 12 and all other pins in the 20-way connector, and shorts-to-ground between pin 12 and chassis ground.

NOTE: The resistance value between pins 12 and 11 will read normal solenoid resistance. The resistance value between pins 12 and 17 will be twice normal solenoid resistance.
Were any wire-to-wire shorts or shorts-to-ground found?</td>
<td>Go to Step 7</td>
<td>Go to Step 10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. Remove the hydraulic control module assembly.
2. Inspect the internal harness for wire-to-wire shorts, or shorts-to-ground. Were any wire-to-wire shorts or shorts-to-ground found?</td>
<td>Refer to Solenoid Resistance Chart (Appendix K)</td>
<td>Go to Step 8</td>
<td>Go to Step 9</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2764 TCC PCS Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 8 | Repair or replace the internal wiring harness.
 | Is the repair complete? | | Go to Step 11 | |
| 9 | Replace solenoid TCC.
 | Is the replacement complete? | | Go to Step 11 | |
| 10 | **NOTE:** In most cases, the TCM is not at fault.
 | Investigate thoroughly before replacing the TCM.
 | Refer to TCM diagnostic procedure, Section 3–6.
 | Is Section 3–6 complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
 | 1. Clear the DTC.
 | 2. Drive the vehicle under normal operating conditions.
 | Did the DTC return? | | Begin the diagnosis again.
 | | Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P278A Kickdown Input Failed ON

Circuit Description

The Transmission Control Module (TCM) can be calibrated to receive an acceleration pedal kickdown input from either an analog input wire or the digital data link. When the operator activates the kickdown feature in the Economy Mode, the TCM uses Performance shift points. A momentary, normally open switch attached to the throttle pedal typically generates the kickdown input signal. The switch provides a detente feel when full-throttle is achieved. When the operator “steps through” the detente, the kickdown function is activated.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- The components are powered and engine speed is greater than 200 rpm and less than 750 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P278A sets if the TCM is calibrated to receive the kickdown input signal and both of the following conditions are met:

- Throttle percentage is less than 20 percent.
- The kickdown input signal is ON for more than 5 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P278A Kickdown Input Failed ON

Actions Taken When the DTC Sets
When DTC P278A is active, the following conditions will occur:

- The CHECK TRANS light does not illuminate.
- DTC is stored in TCM history.
- TCM inhibits Kickdown operation.

Conditions for Clearing the DTC/CHECK TRANS light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- When analog input wires are used, the kickdown function is active when a switch is closed to complete the circuit between wire 122 and signal return wire 103. If a data link is used, the TCM receives “accelerator pedal kickdown input” as part of J1939 message parameters PGN 61443, Electronic Engine Controller 2 (EEC2).
- DTC P278A indicates the TCM has detected a kickdown input signal for more than 5 seconds with less than full throttle conditions. The code can be caused by:
 - Faulty wiring
 - Faulty connections to the accelerator pedal kickdown switch
 - A faulty accelerator pedal kickdown switch
 - Another controller improperly broadcasting kickdown signal on the data link when throttle conditions are not met
 - A faulty TCM.
- Inspect the wiring for poor electrical connections at the TCM and kickdown input switch. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- J1939 Kickdown status can be read on Allison DOC™ For PC–Service Tool. Monitor data link communications using Data Bus Viewer.

Test Description
This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table:

2. This step tests for an active DTC.
4. This step tests for status of analog input wire 122.
5. This step determines if kickdown function activated by a data link message.
6. This step tests for shorts-to-ground in wire 122.
7. This step tests for proper kickdown switch function.
9. This step monitors received messages on the digital data link.
DTC P278A Kickdown Input Failed ON

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | 1. Install the Allison DOC™ For PC–Service Tool.
2. Start the engine.
3. Record the failure records.
4. Clear the DTC and drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
NOTE: This DTC indicates that the kickdown input signal is present for more than 5 seconds when throttle is below 20 percent.
Did DTC P278A return? | Go to Step 3 | Go to Diagnostic Aids |
| 3 | Inspect vehicle for analog kickdown input wire 122.
Is analog input wire 122 present? | Go to Step 4 | Go to Step 9 |
| 4 | 1. Turn ON the ignition.
2. Using Allison DOC™ For PC–Service Tool, observe status of Kickdown input wire 122.
Does wire 122 go ON when throttle pedal is depressed and go OFF when throttle pedal is released? | Go to Step 5 | Go to Step 6 |
| 5 | Using Allison DOC™ For PC–Service Tool, observe status of Kickdown function?
NOTE: If Kickdown function is ON while the Kickdown input wire 122 is OFF, the TCM is receiving a “Kickdown Input-Active” message via the data link.
Is the Kickdown function ON when wire 122 is OFF? | Go to Step 9 | Go to Diagnostic Aids |
| 6 | 1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the OEM-side of the 80-way connector to J 47275 TCM Breakout. Leave the TCM-side disconnected.
4. Check for shorts-to-ground on wire 122.
Were any shorts or wiring defects found? | Go to Step 8 | Go to Step 7 |
| 7 | 1. Turn OFF the ignition.
2. Using a DVOM, check for continuity when switch is depressed and no continuity when switch is released.
Does the switch close when depressed and open when released? | Go to Step 9 | Go to Step 8 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P278A Kickdown Input Failed ON (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9 | 1. Turn ON the ignition.
2. Reconnect the 80-way connector, if removed in Step 5.
3. Install Allison DOC™ For PC–Service Tool.
4. Turn ON the ignition.
On Data Bus Viewer, does AP Kickdown Switch show ON when throttle pedal is depressed and OFF when throttle pedal is released? | Go to Diagnostic Aids | Go to Step 10 | |
| 10 | **NOTE:** Allison Transmission is not responsible for data link messages that originate in other controllers. Repairs not associated with the transmission controller are not covered by Allison Transmission warranty. Coordinate with the vehicle or engine OEM to correct the cause of the inconsistent kickdown switch status message. Is the repair complete? | Go to Step 11 | | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Use Allison DOC™ For PC–Service Tool to monitor retarder request percentage.
3. Drive the vehicle under conditions noted in the failure records.
4. Confirm with the service tool in the test passed section that the diagnostic test was run.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK | |
Circuit Description

Allison 4th Generation Controls shift selectors communicate with the transmission control module (TCM) by exchanging standardized digital messages over the SAE J1939 controller area network (CAN). The shift selectors are also equipped with a single wire backup to the J1939 CAN data link. Allison 4th Generation shift selectors transmit directional information (Forward, Neutral, and Reverse) in the form of an analog pulse-width modulated (PWM) signal via wire 134 to the TCM. The shift selector switches an internal driver ON and OFF to vary the duty cycle of the voltage on wire 134. When the driver in the shift selector is ON, the voltage on wire 134 is pulled to ground. When the driver is OFF, the driver’s output is open and the voltage on wire 134 is high. Since duty cycle is measured when voltage is high, the driver’s OFF-time determines the duty cycle. For example, if wire 134 duty cycle is 15 percent, the shift selector driver is ON (pulled low) 85 percent of the time and OFF (open) 15 percent of the time.

Conditions for Running the DTC

The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2793 Gear Shift Direction Circuit

Conditions for Setting the DTC
DTC P2793 sets when the TCM has received invalid data from the shift selector.

Actions Taken When the DTC Sets
When DTC P2793 is active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- The TCM ignores PWM signal from shift selector.
- If CAN is also lost, the TCM will lock in last valid direction.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2793 is usually caused by an intermittent electrical defect in wire 134. Common causes include:
 - An intermittent open in wire 134 between the shift selector and the TCM.
 - An intermittent short-to-battery or short-to-ground in wire 134.
 - A poor connection at the shift selector or the TCM.
 - A defective shift selector.
- Inspect PWM signal wire 134 for poor electrical connections at the shift selector(s). Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- The PWM signal characteristics are shown in Table 6–18. When the vehicle is equipped with a primary and secondary shift selector, the TCM receives a PWM signal from the active shift selector only.

Table 6–18. PWM Signal Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>Primary Shift Selector</th>
<th>Secondary Shift Selector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>977 Hz 10 Hz (when active)</td>
<td>871 Hz 10 Hz (when active)</td>
</tr>
<tr>
<td>Unknown</td>
<td>15% ± 2%</td>
<td>15% ± 2%</td>
</tr>
<tr>
<td>Park</td>
<td>30% ± 2%</td>
<td>30% ± 2%</td>
</tr>
<tr>
<td>Reverse</td>
<td>45% ± 2%</td>
<td>45% ± 2%</td>
</tr>
<tr>
<td>Neutral</td>
<td>60% ± 2%</td>
<td>60% ± 2%</td>
</tr>
<tr>
<td>Forward</td>
<td>75% ± 2%</td>
<td>75% ± 2%</td>
</tr>
<tr>
<td>Error</td>
<td>90% ± 2%</td>
<td>90% ± 2%</td>
</tr>
</tbody>
</table>
Test Description

This DTC requires the use of the J 47275 TCM Breakout. The number below refers to step numbers on the diagnostic table.

2. This step tests for wiring defects between the TCM and the active shift selector.

DTC P2793 Gear Shift Direction Circuit

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td></td>
<td>2. Disconnect the 80-way connector at the TCM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Connect the OEM 80-way connector to J 47275 TCM Breakout. Leave the TCM disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Disconnect the shift selector(s).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Inspect wire 134 between the TCM and shift selector(s) for defects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. At J 47275-1 TCM Overlay, test pin 34 for wire-to-wire shorts, and shorts-to-ground, and opens between the TCM and shift selector. Massage the harness while making the wiring checks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Were any wiring defects found?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Verify ignition is OFF.</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 4</td>
</tr>
<tr>
<td></td>
<td>2. Reconnect the TCM and OEM 80-way connectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Disconnect the shift selector(s), if not disconnected in Step 2 above.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Using a digital multimeter (DVOM), test for continuity between pin 5 in the OEM shift selector connector and battery ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is there a clean ground to the shift selector?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.</td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coordinate with the vehicle OEM to repair or replace the vehicle wiring.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the repair complete?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NOTE: If the vehicle has a primary and secondary shift selector, both must be disconnected to properly perform this step.</td>
<td></td>
<td>4.5–5.0V</td>
<td>Go to Step 7</td>
</tr>
<tr>
<td></td>
<td>1. Disconnect the shift selector(s).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Turn ON the ignition. Leave the engine OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Using a DVOM set on VDC, measure the voltage on pin 11 in the OEM shift selector connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is voltage within specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P2793 Gear Shift Direction Circuit (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Replace the affected shift selector.</td>
<td></td>
<td></td>
<td>Go to Step 8</td>
</tr>
<tr>
<td></td>
<td>Is the replacement complete?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td>Go to Step 8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>In order to verify your repair:</td>
<td></td>
<td></td>
<td>System OK</td>
</tr>
<tr>
<td></td>
<td>1. Clear the DTC.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Refer to Allison DOC™ For PC–Service Tool “Test Passed” section and confirm the test was run. Did the DTC return?</td>
<td></td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2808 Pressure Control Solenoid 6 (PCS6) Stuck Off

Refer to Hydraulic Schematic

Circuit Description

The Transmission Control Module (TCM) uses input from the turbine speed and the output speed sensors to detect if a clutch is slipping. Pressure Control Solenoid 6 (PCS6) supplies hydraulic pressure to the C6 clutch in Low range for 7-speed models. The TCM sets a DTC P2808 when it detects a slip condition while PCS6 is supplying hydraulic pressure to the oncoming clutch.

Conditions for Running the DTC

- Hydraulic system is pressurized.
- Output speed greater than or equal to 125 rpm.
- Turbine speed greater than or equal to 60 rpm.
- Cold Mode operation not required.

Conditions for Setting the DTC

DTC P2808 sets when the TCM detects an incorrect oncoming ratio (range-to-range) for an accumulated number of occurrences.

Actions Taken When the DTC Sets

- When DTC P2808 occurs, the TCM commands previous range.
- While Diagnostic Response is active, the TCM ignores shift selector input.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- This DTC indicates that the oncoming clutch controlled by PCS6 is not applied or applied too slowly. Common causes include:
 - Erratic turbine or output speed signals.
 - A leak or obstruction in the C6 clutch apply circuit.
 - A defective solenoid.
 - A stuck PCS6 regulator valve.
- PCS6 supplies hydraulic pressure to C6 clutch in Low range for 7-speed models. Check the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
DIAGNOSTIC TROUBLE CODES (DTC)

- If the condition is intermittent, connect Allison DOC™ For PC–Service Tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

Test Description

The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper transmission fluid level.
3. This step tests for active diagnostic codes.
4. This step tests ignition voltage.
5. This step tests speed sensor readings.
6. This step tests for C6 clutch pressure from PCS6.
7. This step tests for evidence of clutch failure.
8. This step tests for stuck or sticking valves and damaged valve body gaskets.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to appropriate mechanic’s tips). Is the transmission fluid level correct?</td>
<td></td>
<td>Go to Step 3</td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
<tr>
<td>3</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Turn ON the ignition, leave engine OFF. 3. Record the failure records. 4. Clear the DTC. 5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records. NOTE: This DTC indicates that the TCM has detected a slip condition and could not verify the correct oncoming ratio following a shift. Did DTC P2808 return?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the DTC Failure Record data. 4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage. Is the voltage within the specified value?</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to General Troubleshooting Section 8</td>
</tr>
<tr>
<td>5</td>
<td>1. Start the engine and drive the vehicle under normal operating conditions. 2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display. Is speed sensor data erratic or are dropouts in signal indicated?</td>
<td>Watch for erratic speed sensor signals</td>
<td>Go to the appropriate speed sensor DTC</td>
<td>Go to Step 6</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2808 Pressure Control Solenoid 6 (PCS6) Stuck Off (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main and C6 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the Failure Records.
6. Read and record Main and C6 clutch pressures. Are the pressure readings within specified values in Appendix B? | Refer to Main and Clutch Pressure specifications in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection. Are there signs of a clutch failure? | | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the appropriate service manual and remove the transmission hydraulic control module.
2. Inspect the control valve body for stuck or sticking solenoid regulator valves.
3. Inspect the suction filter. Ensure screen is not plugged.
4. Inspect for damaged gaskets and face seals. Was a valve body problem found and repaired? | | Go to Step 11 | Go to Step 9 |
| 9 | Replace PCS6. Is the replacement complete? | | Go to Step 11 | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris. If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual). Is the replacement complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine and output speed sensor readings.
3. Drive the vehicle under normal operating conditions. Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2809 Pressure Control Solenoid 6 (PCS6) Stuck On

Refer to Hydraulic Schematic

Circuit Description

The Transmission Control Module (TCM) uses information from the turbine and output speed sensors to detect if a clutch is in a tie-up condition or if three clutches are applied. Pressure Control Solenoid 6 (PCS6) supplies hydraulic pressure to the C6 clutch in Low range for 7-speed models. The TCM sets a DTC P2809 when it detects a tie-up condition while PCS6 is supplying hydraulic pressure to the off-going clutch.

Conditions for Running the DTC

- Hydraulic system is pressurized.
- Output speed greater than or equal to 200 rpm.
- Turbine speed greater than or equal to 200 rpm.
- Cold Mode operation not required.

Conditions for Setting the DTC

DTC P2809 sets when the transmission is shifting from range to range and the off-going range (ratio) remains engaged even though the off-going clutch is commanded OFF.

Actions Taken When the DTC Sets

- When DTC P2809 occurs, the TCM will command previous range.
- While Diagnostic Response is active, the TCM ignores shift selector inputs.
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM inhibits TCC engagement.
- The TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- This DTC indicates that the off-coming clutch controlled by PCS6 is not released or released too slowly. Common causes include:
 - Erratic turbine and output speed sensor readings.
 - An obstruction in the C6 clutch exhaust circuit.
 - A defective PCS6 solenoid.
 - A stuck PCS6 regulator valve.
- PCS6 supplies hydraulic pressure to C6 clutch in Low range for 7-speed models. Check the Allison DOC™ For PC–Service Tool failure record data for previous or current range information when the DTC was set to determine which clutch circuit is suspect.
Diagnostic Trouble Codes (DTC)

- If the condition is intermittent, connect Allison DOC™ diagnostic tool and observe the speed sensor indicated by the code. If the signal is erratic, investigate and eliminate the following:
 - Intermittent wiring connection
 - Excessive vibration (driveline or engine torsionals)
 - Irregular sensor gap (loose sensor, loose tone wheel, or damaged tone wheel).

Test Description

The numbers below refer to step numbers on the diagnostic table.

1. This step tests for proper transmission fluid level.
2. This step tests for active diagnostic codes.
3. This step tests ignition voltage.
4. This step tests speed sensor readings.
5. This step tests for C6 clutch pressure from PCS6.
6. This step tests for evidence of clutch failure.
7. This step tests for stuck or sticking valves and damaged valve body gaskets.

DTC P2809 Pressure Control Solenoid 6 (PCS6) Stuck On

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td></td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>Perform the Fluid Checking Procedure (refer to appropriate mechanic’s tips).</td>
<td>Go to Step 3</td>
<td></td>
<td>Go to Fluid Check Procedure (refer to mechanic’s tips)</td>
</tr>
</tbody>
</table>
| 3 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Turn ON the ignition, leave engine OFF.
 3. Record the failure records.
 4. Clear the DTC.
 5. Drive the vehicle. Attempt to duplicate same operating conditions observed in failure records.
 NOTE: This DTC indicates that the TCM has detected that the off-going clutch did not release (clutch tie-up) following a shift.
 Did DTC P2809 return? | Go to Step 4 | | Go to Diagnostic Aids |
| 4 | 1. Install the Allison DOC™ For PC–Service Tool.
 2. Start the engine.
 3. Record the DTC failure record data.
 4. Using the Allison DOC™ For PC–Service Tool, measure ignition voltage.
 Is the voltage within the specified value? | 9–18V (12V TCM)
 18–32V (24V TCM) | Go to Step 5 | | Go to General Troubleshooting Section 8 |
| 5 | 1. Start the engine and drive the vehicle under normal operating conditions.
 2. Using Allison DOC™ For PC–Service Tool, monitor turbine, engine, and output speed sensor readings using the strip chart display.
 Is speed sensor data erratic or are dropouts in signal indicated? | Watch for erratic speed sensor signals | Go to the appropriate speed sensor DTC | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2809 Pressure Control Solenoid 6 (PCS6) Stuck On (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | 1. Turn OFF the ignition.
2. Install 2000 kPa (300 psi) pressure gauges in main and C6 pressure taps.
3. Start the engine.
4. Using Allison DOC™ For PC–Service Tool, select the clutch test mode.
5. With brakes applied, select and attain the range where the DTC occurred as indicated in the failure records.
6. Read and record Main and C6 clutch pressures. Are the pressure readings within specified values in Appendix B? | Refer to Main and Clutch Pressure specifications in Appendix B | Go to Step 7 | Go to Step 8 |
| 7 | Remove the dipstick and inspect the transmission fluid for clutch debris or burnt odor. If necessary, drain a small amount of fluid for this inspection. Are there signs of a clutch failure? | | Go to Step 10 | Go to Diagnostic Aids |
| 8 | 1. Consult the service manual and remove the transmission hydraulic control module.
2. Inspect the control valve body for stuck or sticking solenoid regulator valves.
3. Inspect the suction filter. Be sure screen is not plugged.
4. Inspect for damaged gaskets and face seals. Was a valve body problem found and repaired? | | Go to Step 11 | Go to Step 9 |
| 9 | Replace PCS6. Is the replacement complete? | | Go to Step 11 | |
| 10 | Remove the main and lube filters and inspect for clutch debris. It may also be necessary to remove the control module and inspect the suction screen for clutch debris. If debris is found, remove the transmission for overhaul or replacement (refer to the appropriate service manual). Is the replacement complete? | | Go to Step 11 | |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Using Allison DOC™ For PC–Service Tool, monitor engine, turbine and output speed sensor readings.
3. Drive the vehicle under normal operating conditions. Did the DTC return? | | Begin the diagnosis again. Go to Step 1 | System OK |
Circuit Description

Pressure Control Solenoid 6 (PCS6) is a normally closed (N/C) solenoid used to apply the C6 clutch in low range (7-speed models only). The TCM commands the solenoid ON to produce hydraulic pressure in the clutch apply circuit. When PCS6 is commanded OFF, the clutch pressure is released.

The TCM sends control current to PCS6 from High Side Driver 1 (HSD1) via wire 111. HSD1 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS6 by switching PCS6 Low Side Driver (LSD) ON and OFF. Wire 178 completes the circuit between PCS6 and its LSD. DTC P2812 indicates that the TCM has detected an open condition in PCS6 electrical circuit. The open condition may exist in the high side (wire 111) or low side (wire 178).

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P2812 is set when the TCM detects an open circuit on the PCS6 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2812 Pressure Control Solenoid 6 (PCS6) Control Circuit Open

Actions Taken When the DTC Sets
When DTC P2812 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2812 indicates an open in the electrical circuit for the PCS6 solenoid. In addition to PCS6, High Side Driver HSD1 also supplies power to the Main Mod and PCS4 solenoids. If DTC P2812 is accompanied by DTC P0960 (Main Mod solenoid open circuit) and/or DTC P2718 (PCS4 open circuit), the open is most likely in the high side of the circuit.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.

Test Description
This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests the OEM harness for an excessive voltage drop caused by an open condition in either wire 111 or wire 178 of the OEM chassis harness.
6. This step tests for an open condition in the transmission internal harness.
7. This step tests for the proper PCS6 resistance.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2812 Pressure Control Solenoid 6 (PCS6) Control Circuit Open

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool. 2. Start the engine. 3. Record the failure records. 4. Monitor ignition voltage. Is the voltage within the specified values?</td>
<td>9–18V (12V TCM) 18–32V (24V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem</td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC. 2. Start the engine and test drive the vehicle. 3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.). Did DTC P2812 return?</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps. 1. Turn OFF the ignition. 2. Install J 47275 TCM Breakout between the OEM and TCM 80-way connectors. 3. Install J 47279 Transmission Breakout between the OEM and transmission 20-way connectors. 4. Turn ignition ON, leave engine OFF. 5. Using Allison DOC™ For PC–Service Tool, enter Solenoid Test mode and command PCS6 ON. 6. Determine the voltage drop in the high side of the PCS6 circuit as follows: • At J 47275-1 TCM Overlay, measure voltage between pin 11 and an isolated ground. • At J 47279-1 Transmission Overlay, measure voltage between pin 1 and isolated ground. • Subtract the two voltage measurements to obtain the voltage drop in the circuit. 7. Determine the voltage drop in the low side of the PCS6 circuit as follows: • At J 47275-1 TCM Overlay, measure voltage between pin 78 and an isolated ground. • At J 47279-1 Transmission Overlay, measure voltage between pin 7 and isolated ground. • Subtract the two voltage measurements to obtain the voltage drop in the circuit. NOTE: A voltage drop of more than 0.5V across either circuit indicates an excessive voltage loss in the OEM harness. Did either high-side or low-side voltage drop exceed 0.5VDC?</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2812 Pressure Control Solenoid 6 (PCS6) Control Circuit Open (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
</tr>
<tr>
<td></td>
<td>Go to Step 11</td>
</tr>
</tbody>
</table>
| 6 | 1. Turn OFF the ignition.
2. Disconnect the OEM 20-way connector from J 47279 Transmission Breakout. Leave the transmission 20-way connector connected to the breakout.
3. Using a digital multimeter (DVOM), measure the resistance between pin 1 and pin 7 of the transmission 20-way connector. Is the resistance within the specified value? |
| | Refer to Solenoid Resistance Chart (Appendix K)
Go to Step 10
Go to Step 7 |
| 7 | 1. Remove the hydraulic control module assembly.
2. Disconnect PCS6 from the internal wiring harness.
3. Using a DVOM, measure PCS6 resistance. Is resistance within the specified values? |
| | Refer to Solenoid Resistance Chart (Appendix K)
Go to Step 8
Go to Step 9 |
| 8 | Replace the internal wiring harness. Is the replacement complete? |
| | **Go to Step 11** |
| 9 | Replace PCS6. Is the replacement complete? |
| | **Go to Step 11** |
| 10 | **NOTE:** In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? |
| | **Go to Step 11** |
| 11 | In order to verify your repair:
1. Clear the DTC.
2. Drive the vehicle under conditions noted in failure records. Did the DTC return? |
| | **Begin the diagnosis again. Go to Step 1**
System OK |
Circuit Description

Pressure Control Solenoid 6 (PCS6) is a normally closed (N/C) solenoid used to apply the C6 clutch in low range (7-speed models only). The TCM commands the solenoid ON to produce hydraulic pressure in the clutch apply circuit. When PCS6 is commanded OFF, the clutch pressure is released.

The TCM sends control current to PCS6 from High Side Driver 1 (HSD1) via wire 111. HSD1 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS6 by switching PCS6 Low Side Driver (LSD) ON and OFF. Wire 178 completes the circuit between PCS6 and its LSD. DTC P2814 indicates that the TCM has detected a short-to-ground condition in the low side of PCS6 electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P2814 is set when the TCM detects a short-to-ground in the PCS6 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2814 Pressure Control Solenoid 6 (PCS6) Control Circuit Low

Actions Taken When the DTC Sets
When DTC P2814 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC P2814 indicates a short-to-ground in the electrical circuit for the PCS6 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter)—Measure solenoid LSD functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts or a short-to-ground condition in wire 178.
6. This step tests for the wire-to-wire shorts or a short-to-ground in the internal transmission harness.

DTC P2814 Pressure Control Solenoid 6 (PCS6) Control Circuit Low

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td>18–32V (24V TCM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Monitor ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the voltage within the specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine and test drive the vehicle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC is intended to detect short-to-ground condition in the PCS6 electrical circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P2814 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td></td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Disconnect the TCM 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install the OEM-side of the 80-way connector to J 47275 TCM Breakout. Leave the TCM disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Disconnect the transmission 20-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Inspect the routing of wire 178 in the chassis harness between the TCM and the transmission connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 78 and all other pins in the 80-way connector, and shorts-to-ground between pin 78 and chassis ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Were any wire-to-wire shorts or shorts-to-ground wiring defects found?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2814 Pressure Control Solenoid 6 (PCS6) Control Circuit Low (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The resistance value between pins 7 and 1, and between pins 7 and 20 will read normal solenoid resistance. The resistance value between pins 7 and 2, and between 7 and 8 will be twice normal solenoid resistance. Refer to the Solenoid Resistance chart for these values.

Were any wire-to-wire shorts, or shorts-to-ground found?

| 6 | 1. Turn OFF the ignition. 2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected. 3. Using a DVOM, test for wire-to-wire shorts between pin 7 and all other pins in the 20-way connector, and shorts-to-ground between pin 2 and chassis ground. | Go to Step 7 | Go to Step 10 |

NOTE: The resistance value between pins 7 and 1, and between pins 7 and 20 will read normal solenoid resistance. The resistance value between pins 7 and 2, and between 7 and 8 will be twice normal solenoid resistance. Refer to the Solenoid Resistance chart for these values.

Were any wire-to-wire shorts, or shorts-to-ground found?

| 7 | 1. Remove the hydraulic control module assembly. 2. Inspect the internal harness for wire-to-wire shorts, or shorts-to-ground. Were any wire-to-wire shorts, or shorts-to-ground found? | Go to Step 8 | Go to Step 9 |

| 8 | Replace the internal wiring harness. Is the replacement complete? | Go to Step 11 |

| 9 | Replace PCS6. Is the replacement complete? | Go to Step 11 |

| 10 | NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete? | Go to Step 11 |

| 11 | In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under conditions noted in failure records. Did the DTC return? | System OK | Begin the diagnosis again. Go to Step 1 |
Circuit Description

Pressure Control Solenoid 6 (PCS6) is a normally closed (N/C) solenoid used to apply the C6 clutch in low range (7-speed models only). The TCM commands the solenoid ON to produce hydraulic pressure in the clutch apply circuit. When PCS6 is commanded OFF, the clutch pressure is released.

The TCM sends control current to PCS6 from High Side Driver 1 (HSD1) via wire 111. HSD1 is continuously ON unless the TCM detects a fault condition. The TCM regulates the amount of current to PCS6 by switching PCS6 Low Side Driver (LSD) ON and OFF. Wire 178 completes the circuit between PCS6 and its LSD. DTC P2815 indicates that the TCM has detected a short-to-battery condition in the low side of PCS6 electrical circuit.

Conditions for Running the DTC

- The components are powered and ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- TCM initialization is in process or engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC P2815 is set when the TCM detects a short-to-battery in the PCS6 return circuit for more than 2 seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC P2815 Pressure Control Solenoid 6 (PCS6) Control Circuit High

Actions Taken When the DTC Sets

When DTC P2815 is active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of latch valves determines the range attained.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC P2815 indicates a short-to-battery in the electrical circuit for the PCS6 solenoid.
- You may have to drive the vehicle in order to experience a fault. Use the data obtained from failure records to determine transmission range and/or certain vehicle operating variables such as temperature, run time etc. This data can be useful in reproducing the failure mode when DTC was set.
- Inspect the wiring for poor electrical connections at the TCM and transmission connector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- Inspect OEM wiring harness routing, look for possible contact points where chafing could occur leading to an open or short circuit condition. Moving parts on the vehicle could be contacting the harness; this includes parking brake drum, suspension components, etc.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- Advanced Troubleshooting (requires a frequency-capable digital multimeter)—Measure solenoid Low Side Driver functionality as follows:
 1. Install TCM breakout harness adapter J 47275 between the 80-way connectors of the TCM and OEM harness.
 2. Set up a frequency-capable digital multimeter, e.g. Fluke 87, to monitor frequency by selecting the VOLTS-DC scale and depressing the HERTZ button once.
 3. Connect the RED test lead to the solenoid low side pin at TCM breakout harness adapter J 47275. Connect the BLACK test lead to the isolated ground pin.
 4. Use Allison DOC™ For PC–Service Tool solenoid test function to command the solenoid ON and OFF.
 5. Frequency should read in the KILOHERTZ range when the driver is commanded ON. Frequency should read 0 hertz when the driver is commanded OFF.
Test Description

This DTC requires the use of the J 47275 TCM Breakout and J 47279 Transmission Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for the proper ignition voltage.
3. This step tests for an active DTC.
4. This step tests for wire-to-wire shorts between wire 178 and other wires in the OEM chassis harness.
6. This step tests for the wire-to-wire shorts in the transmission internal harness.

DTC P2815 Pressure Control Solenoid 6 (PCS6) Control Circuit High

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beginning the Troubleshooting Process</td>
</tr>
<tr>
<td>2</td>
<td>1. Install the Allison DOC™ For PC–Service Tool.</td>
<td>9–18V (12V TCM)</td>
<td>Go to Step 3</td>
<td>Resolve voltage problem</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine.</td>
<td>18–32V (24V TCM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record the failure records.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Monitor ignition voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the voltage within the specified values?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. Clear the DTC.</td>
<td></td>
<td>Go to Step 4</td>
<td>Go to Diagnostic Aids</td>
</tr>
<tr>
<td></td>
<td>2. Start the engine and test drive the vehicle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Attempt to duplicate the same conditions observed in the failure records (range attained, temperature, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This DTC is intended to detect short-to-battery condition in the PCS6 electrical circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did DTC P2815 return?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NOTE: Review Section 4—Wire Test Procedures before performing steps.</td>
<td></td>
<td>Go to Step 5</td>
<td>Go to Step 6</td>
</tr>
<tr>
<td></td>
<td>1. Turn OFF the ignition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Disconnect the TCM 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install the OEM-side of the 80-way connector to the J 47275 TCM Breakout. Leave the TCM disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Disconnect the transmission 20-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Inspect the routing of wires 111 and 178 in the chassis harness between the TCM and the transmission connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts between pin 78 and all other pins in the 80-way connector.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Were any wire-to-wire shorts found?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Trouble Codes (DTC)

DTC P2815 Pressure Control Solenoid 6 (PCS6) Control Circuit High (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. Turn OFF the ignition. 2. Install J 47279 Transmission Breakout to the transmission 20-way connector. Leave the OEM harness disconnected. 3. Using a DVOM, test for wire-to-wire shorts between pin 7 and all other pins in the 20-way connector. NOTE: The resistance value between pins 7 and 1, and between pins 7 and 20 will read normal solenoid resistance. The resistance value between pins 7 and 2, and between 7 and 8 will be twice normal solenoid resistance. Refer to the Solenoid Resistance chart for these values. Were any wire-to-wire shorts found?</td>
<td>Go to Step 7 Go to Step 8</td>
<td>Go to Step 10</td>
<td>Go to Step 9</td>
</tr>
<tr>
<td>7</td>
<td>1. Remove the hydraulic control module assembly. 2. Inspect the internal harness for wire-to-wire shorts. Were any wire-to-wire shorts found?</td>
<td>Refer to Solenoid Resistance Chart (Appendix K)</td>
<td>Go to Step 8 Go to Step 9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Replace the internal wiring harness. Is the replacement complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Replace PCS6. Is the replacement complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td></td>
<td>Go to Step 11</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>In order to verify your repair: 1. Clear the DTC. 2. Drive the vehicle under conditions noted in failure records. Did the DTC return?</td>
<td></td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0001 Hi Speed CAN Bus Reset Counter Overrun (IESCAN)

Circuit Description

Beginnings in MY07, the Allison 4th Generation Controls transmission control module (TCM) is capable of communicating with some Mercedes engines via the IESCAN. The TCM uses the high-speed Controller Area Network 2 (CAN2) chip to exchange standardized messages with the engine controller and other vehicle systems. The IESCAN physical network consists of a two-wire twisted pair, two 120 Ohm resistors and, in most cases, a third shield wire. A 120 Ohm termination resistor is located at each end of the network. Vehicle OEMs may choose to install external termination resistors or use internal termination resistors built into many IESCAN electronic modules.

Conditions for Running the DTC

- Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC

DTC U0001 sets when the TCM detects no communication on the CAN2 backbone for 3 seconds or more.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0001 Hi Speed CAN Bus Reset Counter Overrun (IESCAN)

Actions Taken When the DTC Sets

When DTC U0001 is active, the following conditions will occur:

- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.
- SEM operation is not active, if applicable.
- The TCM defaults to the most recent adaptive shift values and uses default throttle percentage.
- TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- DTC U0001 indicates that a CAN bus hardware error has occurred. This may indicate a short-to-power or short-to-ground exists in the CAN bus wiring harness.
- Vehicle manufactures may use the following pin pairs for the J2284 CAN2 high and low wires:
 - Pins 6 and 7
 - Pins 66 and 47
 - Both pins 6 and 27, and pins 66 and 47 in a “pass-through” setup.

As a result, vehicle manufactures can wire the TCM into the CAN2 backbone in three different ways:

- The TCM may be on its own stub as in traditional CAN backbones.
- The TCM may be wired in a “pass-through” configuration such that the CAN high and low wires are connected to two separate pin pairs in the TCM 80-way connector. Data link messages pass-through but can still be viewed by the TCM.
- The TCM may represent one end of the backbone. Typically, the internal resistor in the TCM will be used in this setup.

- Often an active U0001 will prevent the Allison DOC™ For PC–Service Tool from communicating with the TCM. The J 47276 “T” Breakout and TCM Reflashing Harness may be used to confirm the TCM is operational. Connect the T-harness to the TCM and leave the OEM harness disconnected. Provide input power from the PCCS load box.
- Inspect the J2284 CAN wires for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle in order to experience a fault.
- For proper J2284 data link communications, it is necessary to have two 120 Ohm resistors installed in parallel at the J2284 CAN backbone.
Test Description

This DTC requires the use of the J 47276 “T” Breakout and TCM Reflashing Harness. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for communication with the TCM via the vehicle diagnostic connector.
3. This step tests for communication with the TCM via the T-harness.
4. This step inspects for wiring defects in the CAN backbone.

DTC U0001 Hi Speed CAN Bus Reset Counter Overrun (IESCAN)

<table>
<thead>
<tr>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Connect Allison DOC™ For PC–Service Tool to the vehicle’s diagnostic tool connector.
2. Turn ON the ignition. Leave the engine OFF.
Is the Allison DOC™ For PC–Service Tool communicating with the TCM? | Go to Diagnostic Aids | Go to Step 3 |
| 3 | NOTE: Review Section 4—Wire Test Procedures before performing steps.
1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install J 47276 “T” Breakout to the TCM. Leave the OEM-side disconnected.
4. Provide power to the TCM from the J 47455-A PCCS load box.
Is Allison DOC™ For PC–Service Tool communicating with the TCM? | Go to Step 4 | Go to Step 6 |
| 4 | 1. Turn OFF the ignition.
2. Inspect the CAN2 high, CAN2 low, and CAN2 shield wires at the engine and transmission controllers for possible wire-to-wire shorts, shorts-to-ground, or shorts-to-battery.
NOTE: Vehicle manufactures may used the following pin pairs for CAN high and CAN low.
• Pins 6 and 27
• Pins 66 and 47, or both pairs 6 and 27 and 66 and 47 in a “pass-through” setup.
Were any wiring defects found? | Go to Step 5 | Go to Diagnostic Aids |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0001 Hi Speed CAN Bus Reset Counter Overrun (IESCAN) (cont'd)

<table>
<thead>
<tr>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete?</td>
<td>Go to Step 7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete?</td>
<td>Go to Step 7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>In order to verify your repair:
1. Install Allison DOC™ For PC–Service Tool.
2. If communication is established with the TCM, use Allison DOC™ For PC–Service Tool to clear the DTC.
3. Confirm the TCM can communicate with the engine.
Did the DTC return?</td>
<td>Begin the diagnosis again.
Go to Step 1</td>
<td>System OK</td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0010 CAN Bus Reset Counter Overrun

Circuit Description
In Allison 4th Generation Controls, the preferred digital data link is the SAE J1939 Controller Area Network (CAN). The TCM communicates with the engine control module and other controllers by exchanging standardized digital messages over the SAE J1939 CAN. The physical network consists of a two-wire twisted pair, two 120 Ohm termination resistors and, in most cases, a third shield wire. A 120 Ohm termination resistor is located at each end of the network. Vehicle OEMs may choose to install external termination resistors or use internal termination resistors built into many J1939 electronic modules.

Conditions for Running the DTC
- Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- Engine speed is greater than 200 rpm and less than 7500 rpm for 5 seconds.

Conditions for Setting the DTC
DTC U0010 sets when the TCM detects no communication on the CAN backbone for 3 seconds or more.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0010 CAN Bus Reset Counter Overrun

Actions Taken When the DTC Sets
When DTC U0010 active, the following conditions will occur:

- The TCM does not illuminate the CHECK TRANS light.
- DTC is stored in TCM history.
- SEM operation is not active, if applicable.
- The TCM defaults to the most recent adaptive shifts values and uses default throttle percentage.
- TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- DTC U0010 indicates that a CAN bus hardware error has occurred. This may indicate a short-to-power or short-to-ground exists in the CAN bus wiring harness.
- Vehicle manufacturers may use the following pin pairs for the J1939 CAN high and CAN low wires:
 - Pins 8 and 28
 - Pins 48 and 68
 - Both Pins 8 and 28, and Pins 48 and 68 in a “pass-through” setup
- As a result, vehicle manufacturers can wire the TCM into the CAN backbone in three different ways.
 - The TCM may be on its own stub as in traditional CAN backbones.
 - The TCM may be wired in a “pass-through” configuration such that the CAN high and low wires are connected to two separate pin pairs in the TCM 80-way connector. Data link messages pass-through but can still be viewed by the TCM.
 - The TCM may represent one end of the backbone. Typically, the internal resistor in the TCM will be used in this setup.
- Often an active U0010 will prevent the Allison DOC™ For PC–Service Tool from communicating with the TCM. The J 47276 “T” Breakout and TCM Reflashing Harness may be used to confirm that the TCM is operational. Connect the T-harness to the TCM and leave the OEM harness disconnected. Provide input power from the PCCS load box.
- Inspect the J1939 CAN wires for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle in order to experience a fault.
- For proper J1939 data link communications, it is necessary to have two 120 Ohm resistors installed in parallel at the J1939 CAN backbone.
DIAGNOSTIC TROUBLE CODES (DTC)

Test Description
This DTC requires the use of the J 47276 “T” Breakout and TCM Reflashing Harness. The numbers below refer to step numbers on the diagnostic table.

- **2.** This step tests for communication with the TCM via the vehicle diagnostic tool connector.
- **3.** This step tests for communication with the TCM via the T-harness.
- **4.** This step inspects for wiring defects in the CAN backbone.

DTC U0010 CAN Bus Reset Counter Overrun

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Connect Allison DOC™ For PC–Service Tool to the vehicle’s diagnostic tool connector.
2. Turn ON the ignition. Leave the engine OFF.
Is Allison DOC™ For PC–Service Tool communicating with the TCM? | | **Go to Diagnostic Aids** | **Go to Step 3** |
| 3 | 1. Turn OFF the ignition.
2. Disconnect the 80-way connector at the TCM.
3. Install J 47276 “T” Breakout to the TCM. Leave the OEM-side 80-way connector disconnected.
4. Provide power to the TCM from the J 42455-A PCCS load box.
5. Connect Allison DOC™ For PC–Service Tool to the 9-pin connector in the T-harness.
Is Allison DOC™ For PC–Service Tool communicating with the TCM? | | **Go to Step 4** | **Go to Step 6** |
| 4 | 1. Turn OFF the ignition.
2. Inspect the CAN1 high, CAN1 low, and CAN1 Shield wires at the engine and transmission controllers for possible wire-to-wire shorts, shorts-to-ground, or shorts-to-battery.
NOTE: Vehicle manufacturers may use the following pin pairs for CAN high and CAN low:
- Pins 8 and 28
- Pins 48 and 68, or
- Both pairs (8 and 28), and (48 and 68) in a “pass-through” setup.
Were any wiring defects found? | | **Go to Step 5** | **Go to Diagnostic Aids** |
| 5 | **NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.**
Coordinate with the vehicle OEM to repair or replace the CAN wiring.
Is the repair complete? | | | **Go to Step 7** |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0010 CAN Bus Reset Counter Overrun (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 6 | *NOTE: In most cases, the TCM is not at fault.*
Investigate thoroughly before replacing the TCM.
Refer to TCM diagnostic procedure, Section 3–6.
Is Section 3–6 complete? | | | Go to Step 7 |
| 7 | In order to verify your repair:
1. Install Allison DOC™ For PC–Service Tool.
2. If communication is established with the TCM,
 use Allison DOC™ For PC–Service Tool to clear the DTC.
3. Confirm the TCM can communicate with the engine.
Did the DTC return? | | | | | Begin the diagnosis again.
Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0100 Lost Communication with ECM/PCM (J1587)

REFER TO ELECTRICAL SCHEMATIC IN APPENDIX J

Circuit Description
In Allison 4th Generation Controls, the TCM is capable of communicating with the engine control module and other controllers by exchanging standardized digital messages over the following data links:

- SAE J1939 Controller Area Network (CAN)
- SAE J1708/J1587 Serial Communications Interface
- SAE J2284 High Speed CAN for use in IESCAN applications

The TCM sets a DTC U0100 when it stops receiving certain information (throttle position, coolant temperature, or torque) from the engine controller via the J1587 serial communications interface.

Conditions for Running the DTC
- Ignition voltage is stable for a calibration time.
- Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

Conditions for Setting the DTC
DTC U0100 sets when the TCM detects that no engine torque or throttle messages have being received from the engine controller over the J1708/J1587 data link for 2 seconds or more.

Actions Taken when the DTC Sets
When DTC U0100 active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM defaults to the most recent adaptive shifts values and uses default throttle percentage.
- TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the code from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
- The following condition points to an open in one of the serial communication interface wires at the Engine Control Module:
 - U0100 is active, and
 - Allison DOC™ can view raw J1708/J1587 data from the TCM on data bus viewer when plugged into the 9-pin connector.
- Inspect the J1939 CAN wires for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

DIAGNOSTIC TROUBLE CODES (DTC)

- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle in order to experience a fault.

Test Description

2. This step tests for communications between the TCM and engine controller on the J1708/J1587 data link.
3. This step tests for communications between the TCM and engine controller using the J47276 T-harness.
4. This step tests the J1708/J1587 serial communication interface wiring for open conditions or terminal damage.

DTC U0100 Lost Communication with ECM/PCM (J1587)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Connect Allison DOC™ For PC–Service Tool to the vehicle’s diagnostic tool connector.
2. Turn ON the ignition. Leave the engine OFF.
Can Allison DOC™ For PC–Service Tool read J1708/J1587 information from the TCM on Data Bus Viewer? | | Go to Step 4 | Go to Step 3 |
| 3 | 1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the TCM-side of the 80-way connector to the J47276 “T” Breakout. Leave the OEM-side disconnected.
4. Provide power to the TCM from the J42455-A PCCS load box.
5. Connect Allison DOC™ For PC–Service Tool to the 9-pin connector in the T-harness.
Can Allison DOC™ For PC–Service Tool read J1708/J1587 information from the TCM on Data Bus Viewer? | | Go to Step 4 | Go to Step 7 |
| 4 | 1. Turn OFF the ignition.
2. Inspect the J1708/J1587 SCI wires at the TCM and engine controller for possible open conditions or terminal damage. Look for:
• Connector not locked at module.
• Terminal not locked in back shell.
• Chafing of insulation.
• Terminal damage or signs of corrosion.
Were any wiring defects found? | | Go to Step 5 | Go to Step 6 |

DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0100 Lost Communication with ECM/PCM (J1587) (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Return the vehicle to the OEM for inspection of the following: 1. The engine ECM is properly set to communicate with an Allison TCM. 2. Proper pin location at the engine ECM. 3. Proper operation of the ECM. Is the repair complete?</td>
<td>Go to Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td>Go to Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>In order to verify your repair: 1. Install Allison DOC™ For PC–Service Tool. 2. If communication is established with the TCM, use Allison DOC™ For PC–Service Tool to clear the DTC. 3. Confirm the TCM can communicate with the engine. Did the DTC return?</td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0103 Lost Communication With Gear Shift Module (Shift Selector) 1

Circuit Description

Allison 4th Generation Controls shift selectors communicate with the transmission control module (TCM) by exchanging standardized digital messages over the SAE J1939 Controller Area Network (CAN). The physical network consists of a two-wire twisted pair, two 120 Ohm termination resistors and, in most cases, a third shield wire. A 120 Ohm termination resistor is located at each end of the network to maintain good J1939 signal quality. Vehicle OEMs may chose to configure the network to take advantage of 120 Ohm resistors built in to Allison 4th Generation Controls TCMs and shift selectors.

Conditions for Running the DTC

Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

Conditions for Setting the DTC

DTC U0103 sets when the TCM has not received a state of health (SOH) message from the primary shift selector for 2 or more seconds.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0103 Lost Communication With Gear Shift Module (Shift Selector) 1

Actions Taken When the DTC Sets

When DTC U0103 active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- The active shift selector will freeze the displays for 1.5 seconds, go blank for 10.5 seconds, then display cat-eyes, i.e. -\-\-, -\-\-.
- Direction change shifts, i.e., forward to Reverse, etc., are allowed based on PWM signal from Allison shift selectors.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- Vehicle manufacturers can configure the controller area network to use a built-in termination resistor in Allison shift selectors by installing a jumper between pins 7 and 18 at the primary shift selector connector. OEMs are required to clearly indicate where internal termination resistors have been used.

- DTC U0103 can be caused by the following conditions:
 - An intermittent open between the shift selector and the connector node.
 - A poor connection at the shift selector or the connector node.
 - An intermittent open in the connector node.
 - An open power or ground circuit to the shift selector.
 - A defective shift selector.

- Inspect the J1939 CAN wires for poor electrical connections at the primary shift selector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper power inputs to the primary shift selector.

3. This step tests for wiring defects between the primary shift selector and the connection to the J1939 backbone.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0103 Lost Communication With Gear Shift Module (Shift Selector) 1

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | Test the following primary shift selector circuits for an open or short-to-ground:
1. The battery power supply including fuses, if applicable.
2. The ignition sense circuit.
3. The ground return circuit.
NOTE: DTC U0103 indicates the TCM did not detect a state of health message from the primary shift selector for 2 or more seconds. This may indicate an open in shift selector wiring or a defective shift selector.
Did you find and correct the condition? | Go to Step 6 | Go to Step 3 |
| 3 | 1. Turn OFF the ignition.
2. Disconnect the 80-way connector at the TCM and install J 47275 TCM Breakout.
3. Disconnect the shift selector(s).
4. Inspect the CAN backbone between the TCM and shift selector(s) for defects.
5. At J 47275-1 TCM Overlay, test for wire-to-wire shorts, and shorts-to-ground, and opens between shift selector at pins 8 (CAN Lo1), 28 (CAN Hi1), 48 (CAN Hi2), and 68 (CAN Lo2), if used.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts and opens between shift selector at pin 49 (CAN shield).
NOTE: If the TCM internal resistor is used, the vehicle OEM will connect the wire 107 and wire 128 together in the external harness.
7. If TCM internal termination resistor is used, test for opens, wire-to-wire shorts, and shorts-to-ground at pin 7 (internal resistor).
Were any wiring defects found? | Go to Step 4 | Go to Step 5 |
| 4 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | | Go to Step 6 |
DTC U0103 Lost Communication With Gear Shift Module (Shift Selector) 1 (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 5 | Replace the primary shift selector.
 | Is the replacement complete? | | Go to Step 6 | |
| 6 | In order to verify your repair:
 | 1. Install Allison DOC™ For PC–Service Tool.
 | 2. Clear the DTC.
 | 3. Verify the TCM responds to shift selector commands.
 | 4. Refer to Allison DOC™ For PC–Service Tool
 | “Test Passed” section and confirm the test was run.
 | Did the DTC return? | | Begin the diagnosis again.
 | | | Go to Step 1 | System OK |
Circuit Description

- In Allison 4th Generation Controls, the TCM is capable of communicating with the engine control module and other controllers by exchanging standardized digital messages over the following data links:
 - SAE J1939 Controller Area Network (CAN)
 - SAE J1708/J1587 Serial Communication Interface
 - SAE J2284 High Speed CAN for use in IESCAN applications.
- The TCM sets a DTC U0115 when it stops receiving certain information (throttle position, coolant temperature, or torque) from the engine controller via the J1939 CAN.

Conditions for Running the DTC

- Ignition voltage is stable for a calibration time.
- Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

Conditions for Setting the DTC

DTC U0115 sets when the TCM detects that no engine torque or throttle messages have been received from the engine controller over the J1939 for 2 seconds or more.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0115 Lost Communication With ECM

Actions Taken When the DTC Sets

When DTC U0115 is active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM defaults to the most recent adaptive shifts values and uses default throttle percentage.
- TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- Often an active U0115 will prevent the Allison DOC™ For PC–Service Tool from communicating with the TCM. The J 47276 “T” Breakout and TCM Reflashing Harness may be used to confirm that the TCM is operational. The T-harness is only useful to confirm that the TCM is able to communicate with Allison DOC™ diagnostic tool.
- Vehicles that use SEM/LRTP may set a DTC U0115 when engine performance complaints are present. This may include injector concerns that could cause an engine to default to a “fail safe” mode. Some engine manufacturers may interrupt engine torque messaging, which will result in a DTC U0115. Inspect the engine side for possible engine diagnostic codes that may indicate that this condition is present and correct before performing further troubleshooting on DTC U0115.
- The following condition points to an open in one of the CAN wires at the Engine Control Module:
 - U0115 is active, and
 - Allison DOC™ For PC–Service Tool can communicate with the TCM when plugged into the 9-pin connector.
- This DTC can be caused if engine ECM parameters are improperly set.
- Inspect the J1939 CAN wires for poor electrical connections at the TCM. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.
- When diagnosing for an intermittent short or open, massage the wiring harness while watching the test equipment for a change.
- You may have to drive the vehicle in order to experience a fault.
- For proper J1939 data link communications, it is necessary to have two 120 Ohm resistors installed in parallel at the J1939 CAN backbone.
Diagnostic Trouble Codes (DTC)

Test Description

This DTC requires the use of the J 47276 “T” Breakout and TCM Reflashing Harness. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for communications between the TCM and engine controller on the vehicle data link.
3. This step tests for communications between the TCM and the engine controller using the J 47276 “T” Breakout.
4. This step tests the J1939 CAN1 wiring for open conditions or terminal damage.
5. This step tests the J1939 CAN1 wiring for proper termination resistance value.

DTC U0115 Lost Communication With ECM/PCM (CAN)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | 1. Connect Allison DOC™ For PC–Service Tool to the vehicle’s diagnostic tool connector.
2. Turn ON the ignition. Leave the engine OFF.
Is Allison DOC™ For PC–Service Tool communicating with the TCM? | | Go to Step 4 | Go to Step 3 |
| 3 | 1. Turn OFF the ignition.
2. Disconnect the TCM 80-way connector.
3. Install the TCM-side of the 80-way connector to the J 47276 “T” Breakout and TCM Reflashing Harness. Leave the OEM-side disconnected.
4. Provide power to the TCM from the J 42455 at PCCS load box.
5. Connect Allison DOC™ For PC–Service Tool to the 9-pin connector on the J 47276 “T” Breakout and TCM Reflashing Harness.
Is Allison DOC™ For PC–Service Tool communicating with the TCM? | | Go to Step 4 | Go to Step 9 |
| 4 | 1. Turn OFF the ignition.
2. Inspect the CAN1 high, CAN1 low, and CAN1 Shield wires at the engine and transmission controllers for possible open conditions or terminal damage. Look for the following:
• Connector stub not locked at module
• Terminal not locked in back shell
• Chafing of insulation
• Terminal damage or signs of corrosion.
Were any wiring defects found? | | Go to Step 7 | Go to Step 5 |
| 5 | Using a DVOM, measure resistance between pins C and D at the vehicle 9-pin diagnostic connector. Did the resistance match the specified value? | 60 Ohms | Go to Step 8 | Go to Step 6 |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0115 Lost Communication With ECM/PCM (CAN)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>NOTE: A resistance reading other than 60 Ohms indicates that a termination resistor is missing or a resistor with an improper value is installed. There should be two 120 Ohms resistors wired in parallel in the Controller Area Network. Return the vehicle to the OEM for repair. Is the repair complete?</td>
<td>Go to Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NOTE: The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty. Coordinate with the vehicle OEM to repair or replace the vehicle wiring. Is the repair complete?</td>
<td>Go to Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Return the vehicle to the OEM for inspection of the following: 1. The engine ECM is properly set to communicate with the Allison TCM. 2. Proper pin location at the engine ECM. 3. Proper operation of the ECM. Is the repair complete?</td>
<td>Go to Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NOTE: In most cases, the TCM is not at fault. Investigate thoroughly before replacing the TCM. Refer to TCM diagnostic procedure, Section 3–6. Is Section 3–6 complete?</td>
<td>Go to Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>In order to verify your repair: 1. Install Allison DOC™ For PC–Service Tool. 2. If communication is established with the TCM, use Allison DOC™ For PC–Service Tool to clear the DTC. 3. Confirm the TCM can communicate with the engine. Did the DTC return?</td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td>System OK</td>
<td></td>
</tr>
</tbody>
</table>
Circuit Description

Allison 4th Generation Controls shift selectors communicate with the transmission control module (TCM) by exchanging standardized digital messages over the SAE J1939 Controller Area Network (CAN). The physical network consists of a two-wire twisted pair, two 120 Ohm termination resistors and, in most cases, a third shield wire. A 120 Ohm termination resistor is located at each end of the network to maintain good J1939 signal quality. Vehicle OEMs may choose to configure the network to take advantage of 120 Ohm resistors built in to Allison 4th Generation Controls TCMs and shift selectors.

Conditions for Running the DTC

Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

Conditions for Setting the DTC

DTC U0115 sets when the TCM has not received a state of health (SOH) message from the secondary shift selector for 2 or more seconds.
Actions Taken When the DTC Sets

When DTC U0291 active, the following conditions will occur:

- The **CHECK TRANS** light illuminates.
- DTC is stored in TCM history.
- The active shift selector will freeze the displays for 1.5 seconds, go blank for 10.5 seconds, then display cats-eyes, i.e. -\-, -\-.
- Direction change shifts i.e. forward to Reverse, etc are allowed based on PWM signal from Allison shift selectors.

Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

- Vehicle manufacturers can configure the controller area network to use a built-in termination resistor in the Allison shift selectors by installing a jumper between pins 7 and 18 at the secondary shift selector connector. OEMs are required to clearly indicate where internal termination resistors have been used.
- DTC U0291 can be caused by the following conditions:
 - An intermittent open between the shift selector and the connector node.
 - A poor connection at the shift selector or the connector node.
 - An intermittent open in the connector node.
 - An open power or ground circuit to the shift selector.
 - A defective shift selector.
- Inspect the J1939 CAN wires for poor electrical connections at the secondary shift selector. Look for the following conditions:
 - A bent terminal
 - A backed-out terminal
 - A damaged terminal
 - Poor terminal tension
 - A chafed wire
 - A broken wire inside the insulation.

Test Description

This DTC requires the use of the J 47275 TCM Breakout. The numbers below refer to step numbers on the diagnostic table.

2. This step tests for proper power inputs to the secondary shift selector.
3. This step tests for wiring defects between the secondary shift selector and the connection to the J1939 backbone.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0291 Lost Communication With Gear Shift Module (Shift Selector) 2

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | Test the following secondary shift selector circuits for an open or short-to-ground:
1. The battery power supply including fuses, if applicable.
2. The ignition sense circuit.
3. The ground return circuit.
NOTE: DTC U0291 indicates the TCM did not detect a state of health message from the secondary shift selector for 2 or more seconds. This may indicate an open in shift selector wiring or a defective shift selector.
Did you find and correct the condition? | | Go to Step 6 | Go to Step 3 |
| 3 | 1. Turn OFF the ignition.
2. Disconnect the 80-way connector at the TCM and install J 47275 TCM Breakout.
3. Disconnect the shift selector(s).
4. Inspect the CAN backbone between the TCM and shift selector(s) for defects.
5. At J 47275-1 TCM Overlay, test for wire-to-wire shorts, and shorts-to-ground, and opens between shift selector at pins 8 (CAN Lo1), 28 (CAN Hi1), 48 (CAN Hi2), and 68 (CAN Lo2), if used.
6. At J 47275-1 TCM Overlay, test for wire-to-wire shorts and opens between shift selector at pin 49 (CAN shield).
NOTE: If the TCM internal resistor is used, the vehicle OEM will connect wire 107 and wire 128 together in the external harness.
7. If TCM internal termination resistor is used, test for opens, wire-to-wire shorts, and shorts-to-ground at pin 7 (internal resistor).
Were any wiring defects found? | | Go to Step 4 | Go to Step 5 |
| 4 | **NOTE:** The vehicle OEM has responsibility for all external wiring harness repairs. Harness repairs performed by Allison Transmission distributors and dealers are not covered by Allison Transmission warranty.
Coordinate with the vehicle OEM to repair or replace the vehicle wiring.
Is the repair complete? | | Go to Step 6 |
DTC U0291 Lost Communication With Gear Shift Module (Shift Selector) 2 (cont'd)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Replace the secondary shift selector. Is the replacement complete?</td>
<td>Go to Step 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>In order to verify your repair: 1. Install Allison DOCTM For PC–Service Tool. 2. Clear the DTC. 3. Verify the TCM responds to shift selector commands. 4. Refer to Allison DOCTM For PC–Service Tool “Test Passed” section and confirm the test was run. Did the DTC return?</td>
<td>System OK</td>
<td>Begin the diagnosis again. Go to Step 1</td>
<td></td>
</tr>
</tbody>
</table>
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0304 Incompatible Gear Shift Module 1 (Shift Selector) ID

No Schematic for this DTC

Circuit Description
In Allison 4th Generation Controls, the TCM communicates with the shift selector over the J1939 controller area network. Allison J1939 shift selectors broadcast proprietary messages to the TCM related to range selection and other operating modes. The TCM sets a DTC U0304 when the primary shift selector is not an Allison shift selector or on the approved list of shift selectors.

NOTE: The presence of DTC U0304 indicates the primary shift selector is not on the approved list of shift selectors. Contact the Allison Transmission Applications Engineering (1-800-252-5283) to obtain approval to use the shift selector.

Conditions for Running the DTC
• Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
• This test is run during the entire ignition cycle.

Conditions for Setting the DTC
DTC U0304 sets when the primary shift selector is not an Allison J1939-based shift selector, or on the approved list of OEM-provided shift selectors.

Actions Taken when the DTC Sets
When DTC U0304 active, the following conditions will occur:
• The CHECK TRANS light illuminates.
• DTC is stored in TCM history.
• The TCM ignores shift selector inputs.
• TCM freezes shift adapts (DNA).

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the code from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.
No Schematic for this DTC

Circuit Description
In Allison 4th Generation Controls, the TCM communicates with the shift selector over the J1939 controller area network. Allison J1939 shift selectors broadcast proprietary messages to the TCM related to range selection and other operating modes. The TCM sets a DTC U0304 when the primary shift selector is not an Allison shift selector or on the approved list of shift selectors.

NOTE: The presence of DTC U0304 indicates the primary shift selector is not on the approved list of shift selectors. Contact the Allison Transmission Applications Engineering (1-800-252-5283) to obtain approval to use the shift selector.

Conditions for Running the DTC
- Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).
- This test is run during the entire ignition cycle.

Conditions for Setting the DTC
DTC U0304 sets when the primary shift selector is not an Allison J1939-based shift selector, or on the approved list of OEM-provided shift selectors.

Actions Taken when the DTC Sets
When DTC U0304 active, the following conditions will occur:
- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The TCM ignores shift selector inputs.
- TCM freezes shift adapts (DNA).

Conditions for clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the code from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0404 Invalid Data Received From Gear Shift Module (Shift Selector) 1

Circuit Description
Allison 4th Generation Controls shift selectors communicate with the transmission control module (TCM) by exchanging standardized digital messages over the SAE J1939 Controller Area Network (CAN). The TCM sets a DTC U0404 when it receives invalid data from the primary shift selector.

Conditions for Running the DTC
Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

Conditions for Setting the DTC
DTC U0404 sets when the TCM detects invalid data from the shift selector.

Actions Taken When the DTC Sets
When DTC U0404 active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The active shift selector will freeze the displays for 1.5 seconds, go blank for 10.5 seconds, then display cat-eyes, i.e. -\-, -\-.
- Direction change shifts, i.e., forward to Reverse etc., are allowed based on PWM signal from Allison shift selectors.
Conditions for Clearing the DTC/CHECK TRANS Light

The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids

DTC U0404 is typically caused by a defective primary shift selector.

Test Description

The number below refers to step numbers on the diagnostic table.

1. This step tests for proper power inputs to the primary shift selector.

DTC U0404 Invalid Data Received From Gear Shift Module (Shift Selector) 1

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | Test the following primary shift selector circuits for an open or short-to-ground:
| | 1. The battery power supply including fuses, if applicable.
| | 2. The ignition sense circuit.
| | 3. The ground return circuit.
| | **NOTE:** DTC U0404 indicates the TCM did not detect valid data from the primary shift selector.
| | This may indicate an open in shift selector wiring or a defective shift selector.
| | Did you find and correct the condition? | | Go to Step 4 | Go to Step 3 |
| 3 | Replace the primary shift selector. | | | Go to Step 4 |
| 4 | In order to verify your repair:
| | 1. Install Allison DOC™ For PC–Service Tool.
| | 2. Clear the DTC.
| | 3. Verify the TCM responds to shift selector commands.
| | 4. Refer to Allison DOC™ For PC–Service Tool “Test Passed” section and confirm the test was run.
| | Did the DTC return? | | | Begin the diagnosis again. Go to Step 1 | System OK |
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0592 Invalid Data Received From Gear Shift Module (Shift Selector) 2

Circuit Description
Allison 4th Generation Controls shift selectors communicate with the transmission control module (TCM) by exchanging standardized digital messages over the SAE J1939 Controller Area Network (CAN). The TCM sets a DTC U0592 when it receives invalid data from the secondary shift selector.

Conditions for Running the DTC
Ignition voltage is greater than 9V and less than 18V (12V TCM) or greater than 9V and less than 32V (24V TCM).

Conditions for Setting the DTC
DTC U0592 sets when the TCM has detects invalid data from the shift selector.

Actions Taken When the DTC Sets
When DTC U0592 active, the following conditions will occur:

- The CHECK TRANS light illuminates.
- DTC is stored in TCM history.
- The active shift selector will freeze the displays for 1.5 seconds, go blank for 10.5 seconds, then display cat-eyes, i.e. -\-, -\-, -\-.
- Direction change shifts, i.e., forward to Reverse etc., are allowed based on PWM signal from Allison shift selectors.
DIAGNOSTIC TROUBLE CODES (DTC)

DTC U0592 Invalid Data Received From Gear Shift Module (Shift Selector) 2

Conditions for Clearing the DTC/CHECK TRANS Light
The Allison DOC™ For PC–Service Tool can be used to clear the DTC from the TCM history. The TCM automatically clears the DTC from the TCM history if the vehicle completes 40 warm-up cycles without failure.

Diagnostic Aids
DTC U0592 is typically caused by a defective secondary shift selector.

Test Description
The number below refers to step numbers on the diagnostic table.

2. This step tests for proper power inputs to the secondary shift selector.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Value(s)</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was Section 3–5, Beginning The Troubleshooting Process, performed?</td>
<td></td>
<td>Go to Step 2</td>
<td>Go to Section 3–5, Beginning the Troubleshooting Process</td>
</tr>
</tbody>
</table>
| 2 | Test the following secondary shift selector circuits for an open or short-to-ground:
1. The battery power supply including fuses, if applicable.
2. The ignition sense circuit.
3. The ground return circuit.
NOTE: DTC U0592 indicates the TCM did not detect valid data from the secondary shift selector. This may indicate an open in shift selector wiring or a defective shift selector.
Did you find and correct the condition? | | Go to Step 4 | Go to Step 3 |
| 3 | Replace the secondary shift selector.
Is the replacement complete? | | Go to Step 4 |
| 4 | In order to verify your repair:
1. Install Allison DOC™ For PC–Service Tool.
2. Clear the DTC.
3. Verify the TCM responds to shift selector commands.
4. Refer to Allison DOC™ For PC–Service Tool “Test Passed” section and confirm the test was run.
Did the DTC return? | Begin the diagnosis again. Go to Step 1 | System OK |
SECTION 7—INPUT AND OUTPUT FUNCTIONS

7–1. INPUT FUNCTIONS

Input functions are signals sent into the TCM that prompt the TCM to take action. Input functions are activated and deactivated by switched ignition power or ground (wire 103) to the TCM (wired through the VIW), or through the MODE button on the shift selector. The following input functions can be activated using the MODE button:

- Secondary Shift Schedule
- D1 Selection (available with pushbutton selector only)
- PTO Enable
- Auto 2–1 Preselect for 7-Speeds

The wiring schematic in Appendix J illustrates installation requirements for input functions and designates specific wire numbers in the transmission control system to be used for the activation of these input functions. Appendix J should be used for reference only. The vehicle manufacturer determines which input functions are programmed, which wires are used, and whether voltage input was positive or ground. Wiring schematics for input and output functions are shown in Appendix P. Use Allison DOC™ For PC–Service Tool to determine which wire was programmed for a particular input function and the wiring schematic can be consulted to find out if input to the TCM is + or – voltage. Refer to Allison publication GN3433EN, User Guide for Allison DOC™ For PC–Service Tool, for further information regarding special input functions and other inhibits.

NOTE: The wiring schematic in Appendix J shows the intended use of the control features specified. These features have only been validated in the configuration shown. ANY USE OF THESE FEATURES WHICH DIFFERS FROM WHAT IS SHOWN IS NOT THE RESPONSIBILITY OF ALLISON TRANSMISSION.

CAUTION: NEVER use chassis ground as an INPUT FUNCTION ground. Chassis ground can carry voltage potential of 1 or 2 volts above battery ground. This non-approved input will “confuse” the TCM and cause erroneous input results. Be sure to use wire 103 which is signal ground.

Activating an input function can inhibit transmission operation in the same manner as a diagnostic code. Use the Allison DOC™ For PC–Service Tool to verify an active input function or a diagnostic code inhibit. Refer to Allison publication GN3433EN, User Guide for Allison DOC™ For PC–Service Tool, for further information regarding special input functions and other inhibits. For more detailed information on input functions, refer to the Allison Tech Data Book 4th Generation Controls and General Information.

The maximum number of input and output functions which may be used in any installation depends upon the transmission model and its features. Refer to Table 7–1.

Table 7–1. Input/Output Function Availability

<table>
<thead>
<tr>
<th>Transmission Model</th>
<th>Auxiliary Transmission Controls Functions</th>
<th>Number Of Input Functions</th>
<th>Number Of Output Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-Speed and 4000 7-Speed Transmissions</td>
<td>Retarder</td>
<td>12 + Mode Button</td>
<td>8</td>
</tr>
<tr>
<td>3000 7-Speed Transmissions</td>
<td>Transfer Case</td>
<td>12 + Mode Button</td>
<td>8</td>
</tr>
</tbody>
</table>
INPUT AND OUTPUT FUNCTIONS

The following input functions inhibit direction change shifts (forward to reverse or reverse to forward):

- Auxiliary Function Range Inhibit (standard)
- Auxiliary Function Range Inhibit (special)
- Quick to Neutral, Pump Option
- Automatic Neutral for PTO
- Automatic Neutral at Stop
- Reverse Enable
- Automatic Neutral for Refuse Packers
- Automatic Neutral for Refuse Packers with Service Brake Input
- Direction Change Enable

The following input functions lock the transmission in fourth range:

- Fire Truck Pump Mode
- Fourth Lockup Pump Mode

The following input functions preselect a lower range:

- Engine Brake and Preselect Request (standard)
- Engine Brake and Preselect Request (special)

The following input functions inhibit upshifts:

- D1 Selection
- Auxiliary Hold

The following input functions inhibit lockup shifts:

- Manual Lockup
- Anti-lock Brake Response

The following input function inhibits range and lockup shifts at high horsepower:

- Shift Enable/Shift in Process (Oil Field Application)

The following functions are general restrictions to normal operation:

- High Input Speed causes neutral to range inhibit
- Medium Cold Oil causes operation confined to R (Reverse), N (Neutral), and 2nd-range start
- Hot Oil restricts operation to 4th-range maximum (except emergency applications)
- Two Speed Axle Enable permits change only at low output speed and throttle
- Special Pattern Logic monitors N or D or N to R shifts; if engine throttle or output speed is too high, the transmission remains in N.
- Wheel Lock disengages the lockup clutch and inhibits forward range downshifts and shifts to reverse
- Anti-lock Brake Response deactivates the retarder and disengages the lockup clutch
- High Throttle during N (Neutral) to any range shift causes a revised clutch pressure apply rate and turns off shift adaptive
- Power loss to the TCM restricts operation to certain ranges. Hydraulic default (SOL OFF) is commanded. The shift selector position and hydraulic state of logic values determine the range attained.

The following input function limits operation to 1st-range and N (Neutral):

- Refuse Vehicle Step Switch
7–2. OUTPUT FUNCTIONS

Output functions are signals sent out by the TCM that activate or control devices or mechanisms. These control devices or mechanisms are controlled by relays or direct connection signals from the TCM.

Many input and output functions are closely related. For example, the PTO Enable option (input function) also includes PTO Output wiring information. When searching for output function information, be sure to review any related input function information references.

The wiring schematics in Appendix J and Appendix P illustrate installation requirements for output functions as well as input functions and designate specific wire numbers in the transmission control system to be used for the activation of these output functions. The wiring schematics in Appendix J should be used for reference only. Ask the vehicle manufacturer which specific output functions are programmed and which wires are used. Output function polarity is not significant when an Allison-supplied VIM is used. The Allison DOC™ For PC–Service Tool can also be utilized to determine which wire was programmed for a particular output function. For more detailed information on output functions, refer to Allison Tech Data, Allison 4th Generation Controls 3000 and 4000 Product Families on the Allison Transmission Extranet. The schematics in Appendix P are from Allison Tech Data.
SECTION 8—GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

IMPORTANT:

Determine the following before beginning specific troubleshooting, removing the transmission, or removing attached components.

- Are there active diagnostic codes?
- Is the lever shift selector lever in N (Neutral) to allow starting the engine?
- Is the battery properly connected and charged?
- Is isolated battery properly connected (if used)?
- Is the fluid level correct?
- Is voltage to the TCM correct?
- Is the engine properly tuned?
- Is fuel flow to the engine correct?
- Are wheel chocks in place?
- Is air flow to the cooler and radiator unrestricted?
- Is the driveline properly connected?
- Are there signs of fluid leakage under the vehicle? What is the origination point?
- Are hydraulic connections correctly made and not leaking?
- Is vehicle acceleration from a stop changed?
- Are electrical connections correctly made?
- Are there any other obvious vehicle or transmission problems?
- Are clutch pressures within specified limits?

Use the various sections of this manual to isolate the listed problems. The following charts address specific vehicle complaints. Some complaints involve diagnostic codes, so all troubleshooting should involve determining if the system has set any diagnostic codes.
General Troubleshooting of Performance Complaints

Table 8–1. Troubleshooting Performance Complaints

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIFT SELECTOR DISPLAYS “CATEYE” AND VEHICLE IS NOT OPERABLE</td>
<td>No communication between the TCM and a remote shift selector</td>
<td>Refer to code U0103 or U0291 in Troubleshooting Procedure</td>
</tr>
<tr>
<td>SHIFT SELECTOR DISPLAY IS BLANK</td>
<td>VIM fuse is blown</td>
<td>Replace VIM fuse</td>
</tr>
<tr>
<td></td>
<td>Fuse blown in OEM substitute</td>
<td>Replace VIM fuse</td>
</tr>
<tr>
<td></td>
<td>Failed CAN (J1939) Data Link</td>
<td>Should change to “cateye” (--) within 12 seconds (see Code U0103 or U0291)</td>
</tr>
<tr>
<td>SHIFT SELECTOR NOT LIGHTED AT NIGHT (WHEN HEADLIGHTS ARE ON)</td>
<td>OEM input wire at pin 3 of shift selector connector not connected or improperly connected</td>
<td>Find wire at pin 3 and connect it or install it, if necessary</td>
</tr>
<tr>
<td>VEHICLE WILL NOT START (ENGINE WILL NOT CRANK)</td>
<td>Lever shift selector not in N (Neutral)</td>
<td>Select N (Neutral) and restart</td>
</tr>
<tr>
<td></td>
<td>Dead battery</td>
<td>Recharge battery</td>
</tr>
<tr>
<td></td>
<td>Disconnected battery</td>
<td>Reconnect battery</td>
</tr>
<tr>
<td></td>
<td>Faulty starter circuit</td>
<td>Repair vehicle starter circuit</td>
</tr>
<tr>
<td></td>
<td>Faulty neutral start relay</td>
<td>Replace neutral start relay</td>
</tr>
<tr>
<td></td>
<td>Faulty wiring in neutral start circuit</td>
<td>Repair wiring</td>
</tr>
<tr>
<td></td>
<td>Calibration programmed to J 1939 neutral start message (neutral start relay not used)</td>
<td>Troubleshoot J1939 wiring (CAN link)</td>
</tr>
<tr>
<td></td>
<td>Voltage to TCM too low</td>
<td>Measure battery and charging system voltage</td>
</tr>
<tr>
<td></td>
<td>Faulty ignition wire (163)</td>
<td>Repair wire 163</td>
</tr>
<tr>
<td></td>
<td>Faulty lever shift selector</td>
<td>Replace lever shift selector</td>
</tr>
<tr>
<td></td>
<td>Lack of battery voltage on Circuit 141 from TCM when in neutral</td>
<td>Repair Circuit 141 or replace TCM</td>
</tr>
<tr>
<td>All display segments of display lighted</td>
<td>Shift selector in initialization (approximately 2 seconds)</td>
<td>None, normal</td>
</tr>
<tr>
<td></td>
<td>Faulty TCM</td>
<td>Replace the TCM</td>
</tr>
</tbody>
</table>
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK TRANS LIGHT WILL NOT GO OUT AT START-UP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Vehicle Drives Normally</td>
<td>Faulty CHECK TRANS light, relay, or circuit</td>
<td>Replace relay or repair circuit</td>
</tr>
<tr>
<td></td>
<td>An LED rather than a lamp is installed for the CHECK TRANS light and the LED is partially lighted from leakage current</td>
<td>Install a lamp rather than an LED for the CHECK TRANS light</td>
</tr>
<tr>
<td>B. Vehicle Does Not Drive</td>
<td>Engine does not start</td>
<td>Repair engine starting system</td>
</tr>
<tr>
<td></td>
<td>Faulty harness</td>
<td>Repair harness (Section 4 and Appendix E)</td>
</tr>
<tr>
<td></td>
<td>Faulty interface wiring to vehicle electrical system</td>
<td>Repair wiring (Appendix E)</td>
</tr>
<tr>
<td></td>
<td>Faulty TCM</td>
<td>Replace the TCM</td>
</tr>
<tr>
<td>CHECK TRANS LIGHT FLASHES INTERMITTENTLY</td>
<td>Intermittent power to TCM</td>
<td>Test input power to the TCM and correct if necessary</td>
</tr>
<tr>
<td></td>
<td>Loose wiring to CHECK TRANS light</td>
<td>Repair wiring</td>
</tr>
<tr>
<td></td>
<td>Faulty or incorrect ground wire attachment</td>
<td>Repair ground circuit</td>
</tr>
<tr>
<td></td>
<td>Intermittent opening in Circuit 129</td>
<td>Repair Circuit 129</td>
</tr>
<tr>
<td>NO CHECK TRANS LIGHT AT IGNITION</td>
<td>Faulty light bulb or socket</td>
<td>Replace light bulb or socket</td>
</tr>
<tr>
<td></td>
<td>Incorrect wiring to and from CHECK TRANS light bulb</td>
<td>Repair wiring (Appendix E)</td>
</tr>
<tr>
<td></td>
<td>Faulty wiring harness</td>
<td>Inspect wiring between TCM and CHECK TRANS light, and repair where necessary (Appendix E)</td>
</tr>
<tr>
<td></td>
<td>Circuit 129 open</td>
<td>Repair Circuit 129</td>
</tr>
<tr>
<td></td>
<td>Vehicle wired for J1939 CHECK TRANS light but calibration doesn’t support that message</td>
<td>Reprogram with correct calibration</td>
</tr>
<tr>
<td></td>
<td>Faulty TCM</td>
<td>Replace TCM</td>
</tr>
</tbody>
</table>
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM WILL NOT TURN OFF WHEN IGNITION SWITCH OFF</td>
<td>Faulty ignition switch</td>
<td>Replace ignition switch</td>
</tr>
<tr>
<td></td>
<td>Externally-generated speed sensor signal(s)—refer to Appendix L for detailed inspection</td>
<td>Find source of false speed sensor signal(s) and correct problem</td>
</tr>
<tr>
<td>TRANSMISSION WILL NOT SHIFT TO FORWARD OR REVERSE (STAYS IN NEUTRAL)</td>
<td>Engine rpm too high*</td>
<td>Reduce engine rpm. Also, it may be necessary to reselect N (Neutral) and then D (Drive) or R (Reverse).</td>
</tr>
<tr>
<td></td>
<td>Low fluid level</td>
<td>Add fluid to proper level. Refer to appropriate transmission mechanic’s tips for proper dipstick calibration.</td>
</tr>
<tr>
<td></td>
<td>Throttle position sensor or linkage is not functioning properly*</td>
<td>Refer to throttle position sensor for correct set-up (Appendix F)</td>
</tr>
<tr>
<td></td>
<td>Voltage to TCM too low*</td>
<td>Test vehicle battery and charging system</td>
</tr>
<tr>
<td></td>
<td>Shift selector is not functioning properly</td>
<td>Replace shift selector</td>
</tr>
<tr>
<td></td>
<td>Disconnected or dirty connectors</td>
<td>Perform connector checkout (Appendix E)</td>
</tr>
<tr>
<td></td>
<td>Faulty wiring harnesses</td>
<td>Repair harness (Appendix E)</td>
</tr>
<tr>
<td></td>
<td>Speed sensor(s) not functioning properly*</td>
<td>Repair or replace speed sensor(s) or circuitry. Refer to appropriate transmission service manual and Appendix E.</td>
</tr>
<tr>
<td></td>
<td>Faulty TCM</td>
<td>Replace the TCM</td>
</tr>
<tr>
<td></td>
<td>Input function wire open and “auxiliary function range inhibit”, or “direction change enable” in the calibration*</td>
<td>Test input function programming with Allison DOC™ For PC–Service Tool. Correct wiring or switch problem which does not allow input function wire to be grounded.</td>
</tr>
<tr>
<td></td>
<td>“Auxiliary Function Range Inhibit-Standard” or “direction change enable”—hooked up to brake pressure*</td>
<td>Apply brakes with high force</td>
</tr>
</tbody>
</table>

* Flashing digital display on shifter.
Table 8-1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSMISSION WILL NOT STAY IN FORWARD OR REVERSE</td>
<td>Auto-neutral or quick-to-neutral circuit (input function) faulty</td>
<td>Repair quick-to-neutral circuit</td>
</tr>
<tr>
<td></td>
<td>Leaking at solenoid assembly</td>
<td>Rebuild solenoid assembly. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Faulty solenoid—leaking</td>
<td>Replace solenoid. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td>TRANSMISSION WILL NOT MAKE A SPECIFIC SHIFT</td>
<td>Low engine power</td>
<td>Correct engine problem. Refer to engine service manual.</td>
</tr>
<tr>
<td></td>
<td>Incorrect fluid level</td>
<td>Correct fluid level. Refer to appropriate transmission mechanic’s tips for proper dipstick calibration.</td>
</tr>
<tr>
<td></td>
<td>Extreme fluid temperature</td>
<td>Inspect cooling system and fluid level</td>
</tr>
<tr>
<td></td>
<td>Faulty speed sensor/circuit</td>
<td>Repair circuit or replace speed sensor(s) (refer to codes P0716, P0721, or P0726)</td>
</tr>
<tr>
<td></td>
<td>Faulty temperature sensor/circuit</td>
<td>Test for temperature reading which inhibits shifts</td>
</tr>
<tr>
<td></td>
<td>Incorrect calibration</td>
<td>Install proper calibration</td>
</tr>
<tr>
<td></td>
<td>Faulty shift selector</td>
<td>Replace shift selector</td>
</tr>
<tr>
<td></td>
<td>Hydraulic problem</td>
<td>Refer to Range Clutch Troubleshooting section</td>
</tr>
<tr>
<td></td>
<td>Faulty TCM</td>
<td>Replace TCM</td>
</tr>
<tr>
<td>TRANSMISSION LOCKUP CLUTCH WILL NOT ENGAGE</td>
<td>ABS fault active</td>
<td>Correct ABS fault</td>
</tr>
</tbody>
</table>
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSMISSION DOES NOT SHIFT PROPERLY (ROUGH</td>
<td>Engine idle speed too fast (neutral to range shift)</td>
<td>Adjust engine idle speed. Refer to vehicle service manual.</td>
</tr>
<tr>
<td>SHIFTS, SHIFTS OCCURRING AT TOO LOW OR TOO</td>
<td>Faulty throttle sensor/circuit</td>
<td>Refer to throttle sensor section for installation and operation information (refer to Appendix F)</td>
</tr>
<tr>
<td>HIGH SPEED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCM input voltage low</td>
<td></td>
<td>Test power, ground, charging system, and battery function</td>
</tr>
<tr>
<td>Incorrect shift calibration for vehicle</td>
<td></td>
<td>Install correct calibration</td>
</tr>
<tr>
<td>Instrument panel tachometer incorrect</td>
<td></td>
<td>Repair or replace tachometer</td>
</tr>
<tr>
<td>Incorrectly calibrated electronic speedometer</td>
<td></td>
<td>Calibrate electronic speedometer</td>
</tr>
<tr>
<td>Faulty speed sensor/circuit</td>
<td></td>
<td>Repair circuit or replace speed sensor (refer to codes P0716, P0721, or P0726)</td>
</tr>
<tr>
<td>Loose speed sensor</td>
<td></td>
<td>Tighten speed sensor retaining bracket bolt</td>
</tr>
<tr>
<td>Incorrect fluid level</td>
<td></td>
<td>Correct fluid level. Refer to appropriate mechanic’s tips for proper dipstick calibration.</td>
</tr>
<tr>
<td>Crossed wires in harness</td>
<td></td>
<td>Inspect for crossed wires and correct</td>
</tr>
<tr>
<td>Intermittent problems</td>
<td></td>
<td>Inspect wiring harnesses and connectors (Appendix E)</td>
</tr>
<tr>
<td>Loose or damaged speed gear</td>
<td></td>
<td>Replace output bearing nut sensor retainer</td>
</tr>
<tr>
<td>Logic latch valve sticking</td>
<td></td>
<td>Overhaul valve body assembly. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td>Sticking solenoid regulator valve</td>
<td></td>
<td>Overhaul valve body assembly. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td>Incorrect calibration</td>
<td></td>
<td>Install correct calibration</td>
</tr>
</tbody>
</table>
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUISE CONTROL COMPLAINTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Cruise Control Shift Cycles</td>
<td>Performance shift schedule is being used</td>
<td>Switch to economy shift schedule</td>
</tr>
<tr>
<td></td>
<td>Incorrect droop settings</td>
<td>Modify engine droop settings to provide a larger speed variation before reaction occurs (CAT engines should be set on “soft cruise”. Cummins engines droop settings should be +2 mph and –3 mph.)</td>
</tr>
</tbody>
</table>

RETARDER PERFORMANCE COMPLAINTS		
A. Retarder Does Not Apply	Retarder enable input not activated	Turn on retarder enable switch (if present)
	Retarder enable switch not working	Replace retarder enable switch (if present)
	ABS input is active (if vehicle is equipped with ABS)	None—this is normal. If ABS is active, retarder will not apply.
	Retarder Request below 10.2 percent	Use Allison DOC™ For PC–Service Tool to determine retarder request voltage signaled by each RMR device present. Replace RMR device, based on test results.
	Closed throttle not sensed	Use Allison DOC™ For PC–Service Tool to check throttle signal. Throttle must be below 9.8 percent before retarder will apply. Adjust or replace TPS. **Exception:** If TPS has failed and Service Brake Status input is sensed by TCM, the retarder will still be applied.
	Active code inhibiting retarder	Correct cause for setting these codes: P2685, P2686, P2736, P2738, P2739, C1312, or C1313
	Transmission output speed below 350 rpm (3000 Product Family)	Raise output speed to above 350 rpm (3000 Product Family)
	450 rpm (4000 Product Family)	450 rpm (4000 Product Family)
	Transmission not in a forward range	Shift to a forward range
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Reduced Retarder Effect</td>
<td>Retarder accumulator solenoid not being energized</td>
<td>Correct cause for setting these codes: P2685, P2686, P2736, P2738, P2739, C1312, or C1313</td>
</tr>
<tr>
<td></td>
<td>TCM sensing false overheat condition</td>
<td>Use Allison DOC™ For PC–Service Tool or VOM to check retarder temperature sensor. Replace sensor as required.</td>
</tr>
<tr>
<td></td>
<td>Normal response to overheating: • higher retarder fluid temperature • higher engine coolant temperature • higher sump temperature</td>
<td>See Table 6–7 in Section 6 (DTC P0218, P2740)</td>
</tr>
<tr>
<td>C. Less Retarder Effect Than Expected</td>
<td>Transmission fluid aerated due to incorrect level</td>
<td>Determine transmission fluid level and correct as required</td>
</tr>
<tr>
<td></td>
<td>Wrong retarder control calibration</td>
<td>Measure retarder control calibration. Change retarder charging pressure. Change retarder control calibration, if necessary.</td>
</tr>
</tbody>
</table>

ABNORMAL ACTIVITIES OR RESPONSES

A. Excessive Creep in First and Reverse Gears	Engine idle speed too high	Adjust to correct idle speed—between 500–800 rpm. Refer to vehicle service manual.
B. No Response to Shift Selector	Shift selector not properly connected	Test shift selector response with Allison DOC™ For PC–Service Tool. If no response, inspect remote connection and replace if necessary
	Using wrong shift selector on dual station equipment	Use other selector
	Faulty shift selector	Replace shift selector
	Incorrect fluid level	Correct fluid level. Refer to appropriate transmission mechanic’s tips for proper dipstick calibration.
	Main pressure low	Refer to Low Pressure section
	Logic latch valves sticking (C1, C3, or C5 clutch pressure low)	Overhaul valve body assembly. Refer to appropriate transmission service manual.
C. Vehicle Moves Forward in Neutral*	C1 clutch failed or not released	Rebuild C1 clutch assembly. Refer to appropriate transmission service manual.
D. Vehicle Moves Backward in Neutral*	C3 clutch failed or not released	Rebuild C3 clutch assembly. Refer to appropriate transmission service manual.

* See explanation of NVL in Section 2–3.
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Vehicle Moves Backward in Neutral*</td>
<td>C3 clutch failed or not released</td>
<td>Rebuild C3 clutch assembly. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td>EXCESSIVE FLARE — ENGINE OVERSPEED ON FULL-THROTTLE UPSHIFTS</td>
<td>TPS Adjustment:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Overstroke</td>
<td>Adjust TPS linkage for proper stroke (Appendix F)</td>
</tr>
<tr>
<td></td>
<td>— Loose</td>
<td>Tighten loose bolts or connections</td>
</tr>
<tr>
<td></td>
<td>Incorrect calibration</td>
<td>Correct calibration</td>
</tr>
<tr>
<td></td>
<td>TCM input voltage low</td>
<td>Test electrical system and all connections from battery and TCM</td>
</tr>
<tr>
<td></td>
<td>Incorrect fluid level</td>
<td>Correct fluid level. Refer to appropriate mechanic’s tips for proper dipstick calibration measurements.</td>
</tr>
<tr>
<td></td>
<td>Low main pressure</td>
<td>See Low Pressure section</td>
</tr>
<tr>
<td></td>
<td>Erratic speed sensor signal</td>
<td>Refer to DTC P0716, P0721, or P0726</td>
</tr>
<tr>
<td></td>
<td>Sticking solenoid regulator valve</td>
<td>Clean and repair solenoid regulator valve. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>(see Solenoid and Clutch sections)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piston seals leaking or clutch plates</td>
<td>Overhaul transmission. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>slipping in range involved (see Range Clutch Troubleshooting section)</td>
<td></td>
</tr>
</tbody>
</table>

RANGE CLUTCH TROUBLESHOOTING SECTION

EXCESSIVE SLIPPAGE AND CLUTCH CHATTER

- Incorrect calibration: Verify calibration
- TCM input voltage low: Test power, ground, charging system, and battery functions
- Throttle position sensor out of adjustment or failed: Adjust or replace throttle position sensor (Appendix F)
- Incorrect speed sensor readings: Refer to DTC P0716, P0721, or P0726
- Incorrect fluid level: Correct fluid level. Refer to appropriate mechanic’s tips for proper dipstick calibration measurements.
- Main pressure low: Refer to the Low Pressure section

* See Appendix B—Measure main pressure, clutch pressure, and pressure specifications.
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8-1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCESSIVE SLIPPAGE AND CLUTCH CHATTER (cont’d)</td>
<td>Lockup clutch not applied</td>
<td>Inspect lockup clutch system wiring, pressure, and controls; repair as necessary. Refer to appropriate transmission service manual.*</td>
</tr>
<tr>
<td>A. Ranges 1, 2, 3, 4 Only (6-speed and 3000 7-speed) Ranges Lo, 1, 2, 3, 4 only (4000 7-Speed)</td>
<td>C1 clutch slipping, leaks at splitline gasket, leaks at rotating clutch seals, leaks at piston seals, C1 clutch plates worn</td>
<td>Inspect control module gasket, C1 clutch plates, and piston and rotating seals; replace/rebuild as necessary. Refer to appropriate transmission service manual.*</td>
</tr>
<tr>
<td>B. Ranges 4, 5, 6 Only (6-speed, 7-speed)</td>
<td>C2 clutch slipping, leaks at splitline gasket, leaks at rotating clutch seals, leaks at piston seals, C2 clutch plates worn</td>
<td>Inspect control module gasket, C2 clutch plates, and piston and rotating seals; replace/rebuild as necessary. Refer to appropriate transmission service manual.*</td>
</tr>
<tr>
<td>C. Ranges 3, 5, R Only (6-speed and 4000 7-speed) Ranges Lo, 3, 5, R only (3000 7-Speed)</td>
<td>C3 clutch slipping, leaks at face seals, leaks at piston seals, C3 clutch plates worn</td>
<td>Inspect control module face seals, C3 clutch plates, and piston seals; replace/rebuild as necessary. Refer to appropriate transmission service manual.*</td>
</tr>
<tr>
<td>D. Ranges 2, 6 Only (6-speed and 7-speed)</td>
<td>C4 clutch slipping, leaks at face seals, leaks at piston seals, C4 clutch plates worn</td>
<td>Inspect control module face seals, C4 clutch plates, and piston seals; replace/rebuild as necessary. Refer to appropriate transmission service manual.*</td>
</tr>
<tr>
<td>E. Ranges 1, R Only (6-speed and 7-speed)</td>
<td>C5 clutch slipping, leaks at face seals, leaks at piston seals, C5 clutch plates worn</td>
<td>Inspect control module face seals, C5 clutch plates, and piston seals; replace/rebuild as necessary. Refer to appropriate transmission service manual.*</td>
</tr>
<tr>
<td>F. Range Lo Only (7-Speed)</td>
<td>C6 clutch slipping, leaks at splitline gasket(s), leaks at piston seals, C6 clutch plates worn</td>
<td>Inspect control module gasket, adapter gasket, T-Case gasket(s) C6 clutch plates, and piston seals; replace/rebuild as necessary. Refer to appropriate transmission service manual.*</td>
</tr>
</tbody>
</table>

LOW PRESSURE SECTION

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Low Main Pressure in All Ranges (Including C6, T-Case)</td>
<td>Incorrect fluid level</td>
<td>Correct fluid level. Refer to the appropriate mechanic’s tips for correct dipstick calibration.*</td>
</tr>
<tr>
<td></td>
<td>Oil filter element clogged or faulty</td>
<td>Replace oil filter. Refer to the appropriate mechanic’s tips.</td>
</tr>
</tbody>
</table>

* See Appendix B—Measure main pressure, clutch pressure, and pressure specifications.
Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Low Main Pressure in All Ranges (Including C6, T-Case) (cont’d)</td>
<td>Plugged or faulty suction filter</td>
<td>Clean or replace oil suction filter element and refill the transmission. Refer to the appropriate mechanic’s tips.</td>
</tr>
<tr>
<td></td>
<td>Main pressure regulator valve sticking</td>
<td>Overhaul control module assembly. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Main pressure regulator valve spring weak, broken, or missing</td>
<td>Test spring and replace if necessary. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Control module body leakage (separator plate not flat, separator plate gasket leakage, loose control valve body bolts)</td>
<td>Replace or rebuild control module assembly. Care should be taken when removing and labeling shift springs. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Faulty or incorrect fluid pressure gauge</td>
<td>Repair or replace gauge</td>
</tr>
<tr>
<td></td>
<td>Oil pump worn or damaged</td>
<td>Replace or rebuild oil pump. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td>B. Clutch Pressure Low in Specific Ranges, Normal Pressure in Other Ranges</td>
<td>See Range Clutch Troubleshooting section and Appendix B</td>
<td></td>
</tr>
<tr>
<td>C. Low Lubrication Pressure</td>
<td>Incorrect fluid level</td>
<td>Correct fluid level. Refer to the appropriate mechanic’s tips for proper dipstick calibration.</td>
</tr>
<tr>
<td></td>
<td>Plugged lube filter</td>
<td>Change filter. Refer to the appropriate mechanic’s tips.</td>
</tr>
<tr>
<td></td>
<td>Excessive internal fluid leakage</td>
<td>Measure other pressures (above items); also inspect control module mounting bolts; lubrication valve and spring. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Broken or damaged converter regulator retaining pin</td>
<td>Replace damaged or broken parts. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Cooler lines restricted or leaking</td>
<td>Inspect for kinks, leakage; reroute or replace lines as necessary</td>
</tr>
</tbody>
</table>
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Low Lubrication Pressure (cont’d)</td>
<td>Lubrication valve sticking</td>
<td>Replace lubrication valve</td>
</tr>
<tr>
<td></td>
<td>Cooler plugged</td>
<td>Clean or replace cooler</td>
</tr>
<tr>
<td></td>
<td>Faulty gauge</td>
<td>Repair or replace gauge</td>
</tr>
</tbody>
</table>

STALLS IN FIRST RANGE

A. High Stall Speeds

- Not in gear: Select D (Drive)
- Low fluid level, aerated fluid: Add fluid to proper level. Refer to the appropriate mechanic’s tips for proper dipstick calibration.
- Incorrect torque converter: Replace torque converter. Refer to appropriate transmission service manual.
- Clutch pressure low: Refer to Low Pressure section and Appendix B
- C1 or C5 clutch slipping. *NOTE: Use the Allison DOC™ For PC–Service Tool to check turbine speed.*
- Rebuild C1 or C5 clutch. Refer to appropriate transmission service manual.
- Higher power engine: Confirm proper engine match

B. Low Stall Speeds

- Engine not performing efficiently (may be due to plugged or restricted injectors, high altitude conditions, dirty air filters, out of time, throttle linkage, electronic engine controls problem): Refer to vehicle engine manufacturer’s manual or vehicle service manual
- Stall speeds of 66 percent of normal implies freewheeling stator: Replace or rebuild converter assembly. Refer to appropriate transmission service manual.
- Incorrect torque converter: Install correct torque converter. Refer to appropriate transmission service manual.

OVERHEATING IN ALL RANGES

- Aerated fluid—incorrect fluid level: Adjust fluid to proper level, check for defective pump. Refer to the appropriate mechanic’s tips and transmission service manual.
- Air flow to cooler obstructed: Remove air flow obstruction
- Engine overheat: Correct overheat situation. Refer to vehicle service manual.
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERHEATING IN ALL RANGES (cont’d)</td>
<td>Inaccurate temperature gauge or sending unit</td>
<td>Replace gauge and/or sending unit</td>
</tr>
<tr>
<td></td>
<td>Inaccurate sump temperature sensor</td>
<td>Replace temperature sensor or internal harness. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Transmission cooler lines reversed</td>
<td>Connect cooler lines properly (oil and water should flow in opposite directions)</td>
</tr>
<tr>
<td></td>
<td>Fluid cooler lines restricted</td>
<td>Remove restrictions, clean or replace lines. Refer to vehicle service manual.</td>
</tr>
<tr>
<td></td>
<td>Torque converter (wrong converter, no lockup, stuck stator, or slipping stator)</td>
<td>Replace or repair converter assembly. Refer to appropriate transmission service manual. NOTE: Stuck stator will not allow cool down in neutral.</td>
</tr>
<tr>
<td></td>
<td>Cooler flow loss due to internal leakage</td>
<td>Overhaul transmission. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Inadequate cooler sizing</td>
<td>See vehicle OEM for specifications</td>
</tr>
<tr>
<td></td>
<td>Excessive cooler circuit pressure drop</td>
<td>Test for plugged cooler, lines too small, collapsed hose, too many elbows in circuit</td>
</tr>
<tr>
<td>FLUID COMES OUT OF THE FLUID FILL TUBE AND/OR BREATHER</td>
<td>Dipstick loose</td>
<td>Tighten cap, replace if necessary</td>
</tr>
<tr>
<td></td>
<td>Fluid level too high</td>
<td>Drain to proper level. Refer to the appropriate mechanic’s tips.</td>
</tr>
<tr>
<td></td>
<td>Fluid level too low</td>
<td>Add fluid to proper level</td>
</tr>
<tr>
<td></td>
<td>Breather stopped up—clogged</td>
<td>Clean or replace breather. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Fluid contaminated with foreign liquid</td>
<td>Drain and replace fluid. Locate and fix source of additional fluid. Refer to appropriate transmission service manual if repair is needed.</td>
</tr>
<tr>
<td></td>
<td>Dipstick or fill tube seal worn</td>
<td>Replace seal or dipstick</td>
</tr>
<tr>
<td></td>
<td>Incorrect dipstick marking</td>
<td>Calibrate dipstick. Refer to the appropriate mechanic’s tips.</td>
</tr>
</tbody>
</table>
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints *(cont’d)*

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISE OCCURRING INTERMITTENTLY (BUZZING)</td>
<td>Low fluid level</td>
<td>Add fluid to proper level. Refer to the appropriate mechanic’s tips for proper dipstick calibration.</td>
</tr>
<tr>
<td></td>
<td>Air leak in oil suction screen canister</td>
<td>Replace oil suction screen canister. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Clogged filters</td>
<td>Replace filters. Refer to the appropriate mechanic’s tips.</td>
</tr>
<tr>
<td></td>
<td>Aerated fluid causes noisy pump</td>
<td>Correct fluid level. Refer to the appropriate mechanic’s tips for proper dipstick calibration.</td>
</tr>
<tr>
<td></td>
<td>Low main pressure causes main regulator valve to oscillate</td>
<td>See Low Pressure section</td>
</tr>
<tr>
<td>LEAKING FLUID (OUTPUT SHAFT)</td>
<td>Faulty or missing seal at output flange</td>
<td>Install new lip-type seal in rear of transmission housing. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Machine lead on output flange seal surface</td>
<td>Replace flange</td>
</tr>
<tr>
<td></td>
<td>Flange worn at seal surface</td>
<td>Replace flange</td>
</tr>
<tr>
<td></td>
<td>Insufficient seal around seal OD</td>
<td>When replacing seal, apply sealant. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Damaged, missing, or loose output flange bolts</td>
<td>Replace and/or torque output flange bolts</td>
</tr>
<tr>
<td></td>
<td>Damaged or missing flange button O-ring</td>
<td>Replace flange button O-ring</td>
</tr>
<tr>
<td></td>
<td>Damaged or missing bolt O-rings</td>
<td>Replace O-rings</td>
</tr>
<tr>
<td>TRANSMISSION INPUT</td>
<td>Front seal leaks</td>
<td>Replace front seal. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Converter leaks</td>
<td>Inspect converter seals, cracked converter pump tangs, converter cover, or converter housing porosity; replace parts as required. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>PTO driveline out of specification</td>
<td>Bring driveline into specification</td>
</tr>
</tbody>
</table>
Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRTY FLUID</td>
<td>Failure to change fluid and filters</td>
<td>Change fluid and install new filters. Refer to the appropriate mechanic’s tips.</td>
</tr>
<tr>
<td></td>
<td>Excessive heat</td>
<td>Refer to Overheating section</td>
</tr>
<tr>
<td></td>
<td>Damaged fluid filter/seals</td>
<td>Replace oil filter/seals. Refer to the appropriate mechanic’s tips.</td>
</tr>
<tr>
<td></td>
<td>Substandard fluid</td>
<td>Use recommended fluid. Refer to the appropriate mechanic’s tips.</td>
</tr>
<tr>
<td></td>
<td>Clutch/transmission failure</td>
<td>Overhaul transmission. Refer to appropriate transmission service manual.</td>
</tr>
</tbody>
</table>

POWER TAKEOFF (PTO)

A. Leaks

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damaged or cocked seal</td>
<td>Replace seal</td>
</tr>
<tr>
<td>PTO flange grooved at seal</td>
<td>Replace PTO flange</td>
</tr>
<tr>
<td>Loose flange</td>
<td>Inspect flange and bolts; replace if necessary and properly torque bolts</td>
</tr>
<tr>
<td>Loose bolts or damaged gaskets</td>
<td>Replace gasket and/or properly torque bolts</td>
</tr>
<tr>
<td>Loose or damaged hydraulic lines</td>
<td>Tighten fittings. Replace if necessary.</td>
</tr>
<tr>
<td>(clutched drive)</td>
<td></td>
</tr>
</tbody>
</table>

B. Noisy PTO

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faulty driven component</td>
<td>Replace faulty driven component</td>
</tr>
<tr>
<td>Gears or bearings worn, damaged, or</td>
<td>Rebuild PTO with new gears or bearings</td>
</tr>
<tr>
<td>contaminated</td>
<td></td>
</tr>
</tbody>
</table>

C. No or Intermittent Operation (Clutched Drive)

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical problem (switch, connectors, solenoid, or wires)</td>
<td>Inspect for electrical problem and repair (Appendix E)</td>
</tr>
<tr>
<td>Damaged or worn clutch</td>
<td>Rebuild clutch assembly</td>
</tr>
<tr>
<td>Clutch piston seals damaged or missing</td>
<td>Rebuild clutch assembly</td>
</tr>
<tr>
<td>Inadequate fluid pressure to PTO</td>
<td>Inspect and repair fluid pressure supply; line kinked, loose, or plugged; orifice too small</td>
</tr>
<tr>
<td>Engine speed outside operating band</td>
<td>Increase or reduce engine speed to move within operating band</td>
</tr>
<tr>
<td>Drive or driven gear teeth damaged</td>
<td>Replace damaged gears. Refer to appropriate transmission service manual.</td>
</tr>
</tbody>
</table>

* Contact your nearest Allison dealer/distributor with specific questions relating to PTO repair.
GENERAL TROUBLESHOOTING OF PERFORMANCE COMPLAINTS

Table 8–1. Troubleshooting Performance Complaints (cont’d)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFER CASE (T-CASE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Will Not Go Into Lo Range</td>
<td>TPS adjustment</td>
<td>Properly adjust TPS (Appendix F)</td>
</tr>
<tr>
<td></td>
<td>Engine speed too high</td>
<td>Reduce Engine Speed</td>
</tr>
<tr>
<td></td>
<td>Wrong calibration</td>
<td>Calibrate properly</td>
</tr>
<tr>
<td></td>
<td>Wrong control module (6 speed instead of 7 speed)</td>
<td>Install correct control module</td>
</tr>
<tr>
<td></td>
<td>Faulty wiring, solenoid connectors</td>
<td>Inspect wiring and connectors in control module. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Faulty C6 seals</td>
<td>Replace C6 assembly piston seals. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>Worn C6 clutch plates</td>
<td>Rebuild C6. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td>B. Makes Excessive Noise</td>
<td>Improperly shimmed bearings</td>
<td>Inspect all T-case bearings as directed in transmission repair manual. Reshim as necessary.</td>
</tr>
<tr>
<td>C. No Front Output Drive</td>
<td>Differential clutch bad (C7 piston seals, C7 rotating seals, C7 clutch plates, C7 check ball)</td>
<td>Rebuild differential clutch. Refer to appropriate transmission service manual.</td>
</tr>
<tr>
<td></td>
<td>C7 electrical (wires, solenoids, terminals, connectors)</td>
<td>Inspect and repair C7 electrical system (Appendix E)</td>
</tr>
<tr>
<td>D. Transmission Fluid Leaks</td>
<td>Damaged output seal, output flange seal journal, gasketed mating surfaces, bearing endcaps, electrical connector, oil scavenge line</td>
<td>Determine source of leak and repair. Refer to appropriate transmission service manual.</td>
</tr>
</tbody>
</table>
Table 8–2. Resistance Module Troubleshooting Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Resistance Test in Resistance Module* Terminals</th>
<th>Resistance kΩ ± 5%</th>
<th>% Retarder Application</th>
<th>Voltage ± 0.2V</th>
<th>Wiring to Control Device</th>
<th>Device Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Full On</td>
<td>A to C</td>
<td>12</td>
<td>100</td>
<td>3.6</td>
<td>No connections</td>
<td></td>
</tr>
<tr>
<td>Pressure Switch</td>
<td>A to C</td>
<td>32</td>
<td>0</td>
<td>1.1</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Full On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Step E-10R Bendix</td>
<td>A to C</td>
<td>32</td>
<td>0</td>
<td>1.1</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Pedal</td>
<td></td>
<td></td>
<td>32</td>
<td>1.9</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>2.8</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>3.6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>6-Step Hand Lever</td>
<td>A to C</td>
<td>32</td>
<td>0</td>
<td>1.1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>— Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Position 1</td>
<td></td>
<td></td>
<td>16</td>
<td>1.5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Position 2</td>
<td></td>
<td></td>
<td>28</td>
<td>1.9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Position 3</td>
<td></td>
<td></td>
<td>48</td>
<td>2.3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Position 4</td>
<td></td>
<td></td>
<td>65</td>
<td>2.8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Position 5</td>
<td></td>
<td></td>
<td>84</td>
<td>3.2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Position 6</td>
<td></td>
<td></td>
<td>100</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto 1/2 On</td>
<td>A to C</td>
<td>12</td>
<td>50</td>
<td>2.4</td>
<td>No connections</td>
<td></td>
</tr>
<tr>
<td>3 Pressure Switches —</td>
<td>A to C</td>
<td>32</td>
<td>0</td>
<td>1.1</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td>32</td>
<td>1.9</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td>68</td>
<td>2.3</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td>100</td>
<td>3.6</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Auto 1/3 On</td>
<td>A to C</td>
<td>21.4</td>
<td>32</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Pressure Switches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dedicated Pedal</td>
<td>No Tests</td>
<td>Interface not a resistance module</td>
<td>0</td>
<td>0.7–1.2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>3.4–3.5</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

* Resistance module must be disconnected from the wiring harness and retarder control devices.

** These voltages must be measured between terminals A and B.
APPENDICES

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Identification of Potential Circuit Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>Measuring Clutch and Retarder Pressures</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Solenoid and Clutch Chart</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Wire/Connector Chart</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Connector Part Numbers, Terminal Part Numbers, Tool Part Numbers, and Repair Instructions</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Throttle Position Sensor Adjustment</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Welding on Vehicle/Vehicle Interface Module</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Hydraulic Schematics</td>
</tr>
<tr>
<td>Appendix J</td>
<td>3000 and 4000 Product Families Wiring Schematic</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Solenoid Resistance Charts</td>
</tr>
<tr>
<td>Appendix L</td>
<td>Externally-Generated Electronic Interference</td>
</tr>
<tr>
<td>Appendix M</td>
<td>Diagnostic Tree—3000 and 4000 Product Families Hydraulic System</td>
</tr>
<tr>
<td>Appendix N</td>
<td>Allison DOC™ For PC–Service Tool</td>
</tr>
<tr>
<td>Appendix P</td>
<td>Input/Output Functions</td>
</tr>
<tr>
<td>Appendix Q</td>
<td>Thermistor Troubleshooting Information</td>
</tr>
<tr>
<td>Appendix R</td>
<td>SAE J1939 Communication Link</td>
</tr>
</tbody>
</table>
APPENDIX A—IDENTIFICATION OF POTENTIAL CIRCUIT PROBLEMS

Intermittent codes are a result of faults that are detected, logged, and then disappear, only to recur later. If, when troubleshooting, a code is cleared in anticipation of it recurring and it does not, check the items in the following list for the fault’s source.

A. Circuit Inspection

Intermittent power/ground problems—can cause voltage problems during TCM diagnostic checks which can set various codes depending upon where the TCM was in the diagnostic process.

- Damaged terminals.
- Dirty or corroded terminals.
- Terminals not fully seated in the connector. Inspect indicated wires by uncoupling connector and gently pulling on the wire at the rear of the connector and checking for excessive terminal movement.
- Connectors not fully mated. Inspect for missing or damaged locktabs.
- Screws or other sharp pointed objects pushed into or through one of the harnesses.
- Harnesses which have rubbed through and may be allowing intermittent electrical contact between two wires or between wires and vehicle frame members.
- Broken wires within the braiding and insulation.

B. Finding an Intermittent Fault Condition

To find a fault, like one of those listed, examine all connectors and the external wiring harnesses. Harness routing may make it difficult to see or feel the complete harness. However, it is important to thoroughly check each harness for chafed or damaged areas. Road vibrations and bumps can damage a poorly installed harness by moving it against sharp edges and cause some of the faults. If a visual inspection does not identify a cause, move and wiggle the harness by hand until the fault is duplicated.

The next most probable cause of an intermittent code is an electronic part exposed to excessive vibration, heat, or moisture. Examples of this are:

1. Exposed harness wires subjected to moisture.
2. A defective connector seal allows moisture to enter the connector or part.
3. An electronic part (TCM, shift selector, solenoid, or throttle sensor) affected by vibration, heat, or moisture may cause abnormal electrical conditions within the part.

When troubleshooting Item 3, eliminate all other possible causes before replacing any parts.

Another cause of intermittent codes is good parts in an abnormal environment. The abnormal environment will usually include excessive heat, moisture, or voltage. For example, an TCM that receives excessive voltage will generate a diagnostic code as it senses high voltage in a circuit. The code may not be repeated consistently because different circuits may have this condition on each check. The last step in finding an intermittent code is to observe if the code is set during sudden changes in the operating environment.

Troubleshooting an intermittent code requires looking for common conditions that are present whenever the code is diagnosed.
C. Recurring Conditions

A recurring condition might be:

- Rain
- Outside temperature above or below a certain temperature
- Only on right-hand or left-hand turns
- When the vehicle hits a bump, etc.

If such a condition can be related to the code, it is easier to find the cause. If the time between code occurrences is very short, troubleshooting is easier than if it is several weeks or more between code occurrences.
Testing individual clutch pressures helps to determine if a transmission malfunction is due to a mechanical or an electrical problem. Properly making these pressure checks requires transmission and vehicle (or test stand) preparation, recording of data, and comparing recorded data against specifications provided. These instructions are for all 3000 and 4000 Product Families transmissions.

NOTE: Determine if there are diagnostic codes set which are related to the transmission difficulty you are evaluating. Proceed to make mechanical preparations for measuring clutch pressures after codes have first been evaluated.

A. Transmission and Vehicle Preparation

1. Remove the plugs from the pressure tap locations where measurement is desired (Figure B–1).

![Figure B–1. Clutch Pressure Check Points](image)

NOTE: Retarder charging pressure tap is located on the retarder control valve body for all models with retarder.

CAUTION: Be sure that the hydraulic fittings have the same thread as the plugs removed (7/16-20 UNF-2A). Also please note that these fittings must be straight thread, O-ring style. Failure to do this will result in damage to the control module.

2. Install hydraulic fittings suitable for attaching pressure gauges or transducers.

3. Connect pressure gauges or transducers. Pressure gauge set J 26417-A is available for this purpose. See Table B–2 for pressure levels expected.
APPENDIX B—MEASURING CLUTCH AND RETARDER PRESSURES

4. Be sure that engine speed can be monitored (Allison DOC™ For PC–Service Tool may be used for this purpose).

5. Be sure that transmission sump fluid temperature can be measured (Allison DOC™ For PC–Service Tool may be used for this purpose).

6. Be sure that the transmission has enough fluid for cold operation until an operating temperature fluid level can be set.

7. Bring the transmission to normal operating temperature of 71–93ºC (160–200ºF). Inspect for fluid leaks in the added pressure gauge/transducer lines. Repair leaks as needed. Be sure that fluid level is correct.

B. Recording Data

1. Use the Allison DOC™ For PC–Service Tool, which allows checking of individual range clutch pressures, with the vehicle stationary. Consult Appendix N or Allison publication GN3433EN, User Guide for Allison DOC™ PC–Service Tool, for Action Request and select Clutch Test Mode. Follow instructions to test clutch pressures in individual ranges.

NOTE: Check lockup clutch pressure by driving the vehicle in a range where lockup can be obtained. Record the pressure values at the engine speed and sump fluid temperature values shown in Table B–1. The lockup clutch is functioning correctly when engine speed and turbine speed values are equal as recorded from Allison DOC™ For PC–Service Tool.

2. Consult Table B–1 and locate the transmission model that you are testing.

3. Operate the transmission at the conditions shown in Table B–1 and record engine speed, transmission sump fluid temperature, main hydraulic pressure, and clutch pressures in the ranges where a problem is suspected.

Table B–1. Clutch Pressure Test Conditions

<table>
<thead>
<tr>
<th>Transmission Model/Test Type</th>
<th>Engine rpm</th>
<th>Sump Fluid Temperature</th>
<th>Range</th>
<th>Clutches Pressurized</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Models (except 3000 Product Family)—Idle Test</td>
<td>580–620</td>
<td>71–93ºC (160–200ºF)</td>
<td>Neutral, Reverse, 1C, 2C (2nd range start)</td>
<td>C5, C3, C5, C1, C5, C1, C4</td>
</tr>
<tr>
<td>3000 Product Family—Idle Test</td>
<td>580–620</td>
<td>71–93ºC (160–200ºF)</td>
<td>Neutral, Reverse, LowC, 1C</td>
<td>C5, C3, C5, C3, C6, C1, C5</td>
</tr>
<tr>
<td>3000 Product Family (except 7-Speed Models)—High Speed</td>
<td>2080–2120</td>
<td>71–93ºC (160–200ºF)</td>
<td>Reverse, Neutral, 1C, 2C, 2L, 3L, 4L, 5L, 6L</td>
<td>C3, C5, C5, C1, C5, C1, C4, C1, C4 LU, C1, C3, LU, C1, C2, LU, C2, C3, LU, C2, C4, LU</td>
</tr>
</tbody>
</table>
APPENDIX B—MEASURING CLUTCH AND RETARDER PRESSURES

Table B–1. Clutch Pressure Test Conditions (cont’d)

<table>
<thead>
<tr>
<th>Transmission Model/ Test Type</th>
<th>Engine rpm</th>
<th>Sump Fluid Temperature</th>
<th>Range</th>
<th>Clutches Pressurized</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000 Product Family 7-Speed Models—High Speed</td>
<td>2080–2120</td>
<td>71–93°C (160–200°F)</td>
<td>Reverse</td>
<td>C3 C5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neutral</td>
<td>C5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low C</td>
<td>C3 C6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1C</td>
<td>C1 C5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2C</td>
<td>C1 C4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2L</td>
<td>C1 C4 LU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3L</td>
<td>C1 C3 LU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4L</td>
<td>C1 C2 LU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5L</td>
<td>C2 C3 LU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6L</td>
<td>C2 C4 LU</td>
</tr>
<tr>
<td>4000 Product Family—High Speed</td>
<td>1780–1820</td>
<td>71–93°C (160–200°F)</td>
<td>Reverse</td>
<td>C3 C5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neutral</td>
<td>C5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low C**</td>
<td>C1 C6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1C</td>
<td>C1 C5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2C</td>
<td>C1 C4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2L</td>
<td>C1 C4 LU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3L</td>
<td>C1 C3 LU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4L</td>
<td>C1 C2 LU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5L</td>
<td>C2 C3 LU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6L</td>
<td>C2 C4 LU</td>
</tr>
<tr>
<td>** Only applies to HD 4070.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Comparing Recorded Data to Specifications

1. Be sure that engine speed and transmission sump fluid temperatures were within the values specified in Table B–1.

2. Compare the main pressure and clutch pressure data, recorded in Step B, with the specifications in Table B–2.

3. If clutch pressures are within specifications, return the transmission and vehicle to their original configuration and proceed with electrical troubleshooting.

4. If clutch pressures are not within specification, take corrective action to replace the internal parts of the transmission necessary to correct the problem. (Refer to the appropriate transmission service manual for the model being tested.)

5. Review pressure values after the transmission has been repaired.

6. Return the transmission to its original configuration. (Remove instrumentation and reinstall any components removed for the pressure testing.)
Table B–2. Main Pressure and Clutch Pressure Specifications
(Sump Fluid Temperature Same as in Table B–1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>------------------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
APPENDIX B—CHECKING CLUTCH AND RETARDER PRESSURES

<table>
<thead>
<tr>
<th>Engine rpm</th>
<th>Transmission Model/Test Type</th>
<th>Main Pressure Specifications</th>
<th>Clutch Pressure Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>580–620</td>
<td>4000 Product Family—Idle</td>
<td>Main Mod OFF</td>
<td>C5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1515–2055 (210–300)</td>
<td>1235–1725 (180–250)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150–250</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main Mod ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1310–1725 (210–300)</td>
<td>1095–1585 (180–250)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120–200</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low C (40007-Speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1240–1725 (180–250)</td>
<td>705–1340 (115–195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clutch Press. Spec.</td>
<td>3.5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–195</td>
<td>0.5 min</td>
</tr>
</tbody>
</table>

(cont'd)
Table B–2. Main Pressure and Clutch Pressure Specifications
(Sump Fluid Temperature Same as in Table B–1) *(cont’d)*

|-----------------------------|------------|----------------------------|------------------|------------------------------------|-----------------------------|----------------------------------|

* To pass this specification, measured clutch pressures must be within 75kPa (10 psi) of actual measured main pressure and still be within the minimum and maximum value of this specification.
APPENDIX B—MEASURING CLUTCH AND RETARDER PRESSURES

D. Retarder Pressure Checks—3000 and 4000 Product Families

1. 3000 Product Family Low Speed/Low Torque Transmission Dyno Test
 a. 3000 Product Family (except 3500 RDS/EVS/SPS, and MD 3560) Test Conditions:
 • Second Range Lockup, 100 Percent Retarder Apply, Input Speed = 1075–1125 rpm
 b. 3500 RDS/EVS/SPS and MD 3560 Test Conditions:
 • Second Range Lockup, 100 Percent Retarder Apply, Input Speed = 1350–1400 rpm

 Table B–3. Retarder Specifications At Above Test Conditions

<table>
<thead>
<tr>
<th>Parameter To Check</th>
<th>High Capacity</th>
<th>Medium Capacity</th>
<th>Low Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooler In Temperature – °C (°F)</td>
<td>150 (300) Max (Ref)</td>
<td>150 (300) Max (Ref)</td>
<td>150 (300) Max (Ref)</td>
</tr>
</tbody>
</table>

2. 3000 Product Family High Speed Vehicle Road Test Conditions:
 • Fourth Range Lockup, 100 Percent Retarder Apply, Input Speed = 1900–2000 rpm

 Table B–4. Retarder Specifications At Above Test Conditions

<table>
<thead>
<tr>
<th>Parameter To Check</th>
<th>High Capacity</th>
<th>Medium Capacity</th>
<th>Low Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retarder Charge Pressure – kPa [psi]</td>
<td>539–608 (78–88)</td>
<td>446–521 (65–76)</td>
<td>384–444 (56–64)</td>
</tr>
<tr>
<td>Cooler In Temperature – °C (°F)</td>
<td>150 [300] Max (Ref)</td>
<td>150 [300] Max (Ref)</td>
<td>150 [300] Max (Ref)</td>
</tr>
</tbody>
</table>

3. 4000 Product Family Low Speed/Low Torque Transmission Dyno Test
 a. 4000 Product Family (except 4500 models) Test Conditions:
 • Second Range Lockup, 100 Percent Retarder Apply, Input Speed = 1025–1075 rpm
 b. 4500 Model Test Conditions:
 • Second Range Lockup, 100 Percent Retarder Apply, Input Speed = 1190–1240 rpm

 Table B–5. Retarder Specifications At Above Test Conditions

<table>
<thead>
<tr>
<th>Parameter To Check</th>
<th>High Capacity</th>
<th>Medium Capacity</th>
<th>Low Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooler In Temperature – °C (°F)</td>
<td>150 [300] Max (Ref)</td>
<td>150 [300] Max (Ref)</td>
<td>150 [300] Max (Ref)</td>
</tr>
</tbody>
</table>
APPENDIX B—MEASURING CLUTCH AND RETARDER PRESSURES

4. 4000 Product Family High Speed Vehicle Road Test Conditions:
 • Fourth Range Lockup, 100 Percent Retarder Apply, Input Speed = 1550-1650 rpm

Table B–6. Retarder Specifications At Above Test Conditions

<table>
<thead>
<tr>
<th>Parameter To Check</th>
<th>High Capacity</th>
<th>Medium Capacity</th>
<th>Low Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooler In Temperature–°C [°F]</td>
<td>150 [300] Max (Ref)</td>
<td>150 [300] Max (Ref)</td>
<td>150 [300] Max (Ref)</td>
</tr>
</tbody>
</table>
APPENDIX C—SOLENOID AND CLUTCH CHART

BASIC CONFIGURATION

<table>
<thead>
<tr>
<th>Range</th>
<th>Solenoid Variable Bleed</th>
<th>Clutches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCS1 N/O</td>
<td>PCS2 N/O</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>N−C5</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NVL</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>N−C4</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>N−C3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTE: See Page C−2 for legend.

7-SPEED CONFIGURATION

3000 and 4000 Product Families

<table>
<thead>
<tr>
<th>Range</th>
<th>Solenoid Variable Bleed</th>
<th>Clutches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCS1 N/O</td>
<td>PCS2 N/O</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LO-3700</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LO-4700</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>N−C5</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NVL</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>N−C4</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>N−C3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTE: See Page C−2 for legend.
APPENDIX C—SOLENOID AND CLUTCH CHART

LEGEND

X Indicates solenoid is electrically ON.
Y Indicates clutch is hydraulically applied.
Blank Indicates solenoid is electrically OFF or clutch is not hydraulically applied.
O Optional ON or OFF.
* See NVL explanation below.

NVL
As a diagnostic response:
If Turbine Speed is below 150 rpm when Output Speed is below 100 rpm and Engine Speed is above 400 rpm, Neutral Very Low (NVL) is commanded when N–C5 (Neutral) is the selected range. NVL is achieved by turning PCS4 solenoid “on” in addition to PCS3 being “on”, which locks the output. Otherwise, PCS4 solenoid is turned off N1 (Neutral).

As a commanded range when shifting to Fire Truck Pump Mode:
While wire 123 is energized before wire 122 is energized when going into Fire Truck Pump Mode, Neutral Very Low (NVL) will be commanded to lock the output to assist the shifting of the split-shaft PTO transfer case from road mode to pump mode. While wire 123 is de-energized before wire 122 is de-energized when shifting out of Fire Truck Pump Mode, Neutral Very Low (NVL) will be commanded to lock the output to assist the shifting of the split-shaft PTO transfer case from pump mode to road mode.
APPENDIX D—WIRE/CONNECTOR CHART

The connector information in this appendix is provided for the convenience of the servicing technician. The connector illustration and pin identifications for connection to Allison Transmission components will be accurate. Allison Transmission components are the TCM, speed sensors, retarder connectors, transmission connectors, and shift selectors. Other kinds of connectors for optional or customer-furnished components are provided based on typical past practice for an Allison-designed system.

Contact St. Clair Technologies, Inc. or your vehicle manufacturer for information on connectors not found in this appendix.

NOTE: The following abbreviation guide should be used to locate connector termination points for wires in the Allison 4th Generation wiring harness(es).

<table>
<thead>
<tr>
<th>Termination Point Abbreviation</th>
<th>Connector Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Anti-lock Brake System</td>
</tr>
<tr>
<td>ARTN</td>
<td>Analog Return</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>DDRD</td>
<td>Diagnostic Connector—Deutsch</td>
</tr>
<tr>
<td>DDRP</td>
<td>Diagnostic Connector—Packard</td>
</tr>
<tr>
<td>GPI</td>
<td>General Purpose Input</td>
</tr>
<tr>
<td>GPO</td>
<td>General Purpose Output</td>
</tr>
<tr>
<td>J1939</td>
<td>J1939 Datalink From ECU Selector (S) Harness</td>
</tr>
<tr>
<td>NE</td>
<td>Engine Speed Sensor</td>
</tr>
<tr>
<td>NO</td>
<td>Output Speed Sensor</td>
</tr>
<tr>
<td>NT</td>
<td>Turbine Speed Sensor</td>
</tr>
<tr>
<td>OBDII</td>
<td>Diagnostic Connector—GMC On Board Diagnostics</td>
</tr>
<tr>
<td>OLS</td>
<td>Oil Level Sensor</td>
</tr>
<tr>
<td>PCS</td>
<td>Pressure Control Solenoid</td>
</tr>
<tr>
<td>PS</td>
<td>Pressure Switch—Control Module</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>RMR</td>
<td>Retarder Modulation Request Device</td>
</tr>
<tr>
<td>RNGTRM</td>
<td>Chassis Ground Ring Terminal</td>
</tr>
<tr>
<td>RTEMP</td>
<td>Retarder Temperature—Retarder Housing</td>
</tr>
<tr>
<td>SCI</td>
<td>Serial Communication Interface</td>
</tr>
<tr>
<td>SS</td>
<td>Shift Solenoid</td>
</tr>
<tr>
<td>TCASE</td>
<td>3000 Product Family 7-Speed Transfer Case</td>
</tr>
<tr>
<td>TPS</td>
<td>Throttle Position Sensor</td>
</tr>
<tr>
<td>TRANS</td>
<td>Transmission Feedthrough Harness</td>
</tr>
<tr>
<td>VIM</td>
<td>Vehicle Interface Module</td>
</tr>
</tbody>
</table>
80-Way TCM Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blue</td>
<td>101</td>
<td>GPI 6 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>2</td>
<td>Yellow</td>
<td>102</td>
<td>GPI 2 (+)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>3</td>
<td>Yellow</td>
<td>103</td>
<td>TCM Digital Return</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>4</td>
<td>Yellow</td>
<td>104</td>
<td>GPO 2 (–)</td>
<td>Vehicle System or VIM-B1</td>
</tr>
<tr>
<td>5</td>
<td>Orange</td>
<td>105</td>
<td>GPO 4 (–)</td>
<td>Vehicle System or VIM-C2</td>
</tr>
<tr>
<td>6</td>
<td>Yellow</td>
<td>106</td>
<td>CAN 2 High (+)</td>
<td>IES CAN A or H</td>
</tr>
<tr>
<td>7</td>
<td>Yellow</td>
<td>107</td>
<td>Internal Terminating Resister CAN 1 (TCM)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>8</td>
<td>Green</td>
<td>108</td>
<td>CAN 1 Low (–)</td>
<td>J1939 B or L</td>
</tr>
<tr>
<td>9</td>
<td>Gray</td>
<td>109</td>
<td>Battery (–)</td>
<td>Vehicle System or VIM-A2</td>
</tr>
<tr>
<td>10</td>
<td>Pink</td>
<td>110</td>
<td>Battery (+)</td>
<td>Vehicle System or VIM-E2</td>
</tr>
<tr>
<td>11</td>
<td>Orange</td>
<td>111</td>
<td>High Side Driver Feed (HSD1)</td>
<td>Trans Connector (Pin 1)</td>
</tr>
<tr>
<td>12</td>
<td>Pink</td>
<td>112</td>
<td>Signal Reference 5V</td>
<td>Trans Connector (Pin 16) TPS (Pin C) RMR (Pin C)</td>
</tr>
<tr>
<td>13</td>
<td>White</td>
<td>113</td>
<td>GPO 8 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>14</td>
<td>Blue</td>
<td>114</td>
<td>Strip Shift Selector Bit-4</td>
<td>Strip Shift Selector (Pin C)</td>
</tr>
<tr>
<td>15</td>
<td>White</td>
<td>115</td>
<td>Pressure Control Solenoid (PCS5)</td>
<td>Retarder Solenoid (Pin A) or T-Case (Pin A)</td>
</tr>
<tr>
<td>16</td>
<td>Blue</td>
<td>116</td>
<td>OLS</td>
<td>Trans Connector (Pin 15)</td>
</tr>
<tr>
<td>17</td>
<td>Blue</td>
<td>117</td>
<td>GPI 10 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>Not used in 3000 and 4000 Product Families</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Blue</td>
<td>119</td>
<td>Shift Solenoid (SS2)</td>
<td>Trans Connector (Pin 17) or Retarder Accumulator Solenoid (Pin A)</td>
</tr>
<tr>
<td>20</td>
<td>Blue</td>
<td>120</td>
<td>Turbine Speed Sensor—Low</td>
<td>NT-B (4000) or Trans Connector (Pin 14) (3000)</td>
</tr>
<tr>
<td>21</td>
<td>Green</td>
<td>121</td>
<td>ABS/GPI 8 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>22</td>
<td>Yellow</td>
<td>122</td>
<td>GPI 4 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>23</td>
<td>Green</td>
<td>123</td>
<td>GPI 1 (+)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>24</td>
<td>White</td>
<td>124</td>
<td>GPO 5</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>25</td>
<td>Tan</td>
<td>125</td>
<td>Vehicle Speed Signal</td>
<td>Input for Vehicle Speedometer or VIM-B2</td>
</tr>
<tr>
<td>26</td>
<td>Yellow</td>
<td>126</td>
<td>Internal Terminating Resistor CAN 2 (TCM)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>27</td>
<td>Green</td>
<td>127</td>
<td>CAN 2 Low (–)</td>
<td>IES CAN B or L</td>
</tr>
<tr>
<td>28</td>
<td>Yellow</td>
<td>128</td>
<td>CAN 1 High (+)</td>
<td>J1939 A or H</td>
</tr>
<tr>
<td>29</td>
<td>Green</td>
<td>129</td>
<td>CHECK TRANS (–)</td>
<td>Vehicle System</td>
</tr>
</tbody>
</table>

Figure D–1. 80-Way TCM Connector
APPENDIX D—WIRE/CONNECTOR CHART

80-Way TCM Connector (cont’d)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>White</td>
<td>130</td>
<td>GPO 1 (+)</td>
<td>Vehicle System or VIM-D2</td>
</tr>
<tr>
<td>31</td>
<td>Yellow</td>
<td>131</td>
<td>HSD3</td>
<td>Trans Connector (Pin 11), Retarder Accumulator Solenoid (Pin B), and Retarder Solenoid (Pin B) or T-Case (Pin-B)</td>
</tr>
<tr>
<td>32</td>
<td>White</td>
<td>132</td>
<td>SAE J1708 High</td>
<td>J1708 High</td>
</tr>
<tr>
<td>33</td>
<td>Yellow</td>
<td>133</td>
<td>PCS3</td>
<td>Trans Connector (Pin 9)</td>
</tr>
<tr>
<td>34</td>
<td>No Color</td>
<td>134</td>
<td>Allison-supplied J1939 Shift Selector</td>
<td>Allison J1939 Shift Selector (Pin 11)</td>
</tr>
<tr>
<td>35</td>
<td>Blue</td>
<td>135</td>
<td>Engine Water Temperature</td>
<td>Engine Water Temp (Pin A)</td>
</tr>
<tr>
<td>36</td>
<td>Orange</td>
<td>136</td>
<td>PCS1</td>
<td>Trans Connector (Pin 4)</td>
</tr>
<tr>
<td>37</td>
<td>White</td>
<td>137</td>
<td>TCC Solenoid</td>
<td>Trans Connector (Pin 12)</td>
</tr>
<tr>
<td>38</td>
<td>Tan</td>
<td>138</td>
<td>Strip Shift Selector Bit-Parity</td>
<td>Strip Shift Selector (Pin E)</td>
</tr>
<tr>
<td>39</td>
<td>Orange</td>
<td>139</td>
<td>Engine Speed Sensor—Low</td>
<td>NE-B</td>
</tr>
<tr>
<td>40</td>
<td>Green</td>
<td>140</td>
<td>Output Speed Sensor—Low</td>
<td>NO-B or T-Case (Pin D)</td>
</tr>
<tr>
<td>41</td>
<td>Tan</td>
<td>141</td>
<td>Neutral Start Output (+)</td>
<td>To OEM supplied starter relay or VIM-D1</td>
</tr>
<tr>
<td>42</td>
<td>White</td>
<td>142</td>
<td>GPI 5 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>43</td>
<td>Blue</td>
<td>143</td>
<td>GPI 3 (+)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>44</td>
<td>Blue</td>
<td>144</td>
<td>PWM/TPS Input</td>
<td>Vehicle System or TPS (Pin B)</td>
</tr>
<tr>
<td>45</td>
<td>Orange</td>
<td>145</td>
<td>GPO 3 (–)</td>
<td>Vehicle System or VIM-F3</td>
</tr>
<tr>
<td>46</td>
<td>N/A</td>
<td>146</td>
<td>ISO 9141</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>47</td>
<td>Green</td>
<td>147</td>
<td>CAN 2 Low</td>
<td>IES CAN B or L</td>
</tr>
<tr>
<td>48</td>
<td>Yellow</td>
<td>148</td>
<td>CAN 1 High</td>
<td>J1939 A or H</td>
</tr>
<tr>
<td>49</td>
<td>N/A</td>
<td>149</td>
<td>CAN 1 Shield</td>
<td>J1939 C or S</td>
</tr>
<tr>
<td>50</td>
<td>Pink</td>
<td>150</td>
<td>GPO 7 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>51</td>
<td>White</td>
<td>151</td>
<td>SS1</td>
<td>Trans Connector (Pin 10)</td>
</tr>
<tr>
<td>52</td>
<td>Green</td>
<td>152</td>
<td>PCS2</td>
<td>Trans Connector (Pin 5)</td>
</tr>
<tr>
<td>53</td>
<td>Green</td>
<td>153</td>
<td>Strip Shift Selector Bit-2</td>
<td>Strip Shift Selector (Pin B)</td>
</tr>
<tr>
<td>54</td>
<td>Tan</td>
<td>154</td>
<td>Sump Temp Sensor</td>
<td>Trans Connector (Pin 18)</td>
</tr>
<tr>
<td>55</td>
<td>White</td>
<td>155</td>
<td>PCS4</td>
<td>Trans Connector (Pin 2)</td>
</tr>
<tr>
<td>56</td>
<td>Yellow</td>
<td>156</td>
<td>Retarder Request Sensor</td>
<td>RMR (Pin B)</td>
</tr>
<tr>
<td>57</td>
<td>White</td>
<td>157</td>
<td>GPI 12 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>58</td>
<td>Green</td>
<td>158</td>
<td>TCM Analog Return</td>
<td>Trans Connector (Pin 19), RMR (Pin A), TPS (Pin A), Engine Water Temp (Pin B), Retarder Temp (Pin B)</td>
</tr>
<tr>
<td>59</td>
<td>Tan</td>
<td>159</td>
<td>Engine Speed Sensor—High</td>
<td>NE-A</td>
</tr>
<tr>
<td>60</td>
<td>Yellow</td>
<td>160</td>
<td>Output Speed Sensor—High</td>
<td>NO-A or T-Case (Pin C)</td>
</tr>
<tr>
<td>61</td>
<td>Orange</td>
<td>161</td>
<td>GPI 7 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>62</td>
<td>Yellow</td>
<td>162</td>
<td>GPI 9 (–)</td>
<td>Vehicle System or VIM-F1</td>
</tr>
<tr>
<td>63</td>
<td>Yellow</td>
<td>163</td>
<td>Ignition Power</td>
<td>Vehicle System or VIM-F1</td>
</tr>
<tr>
<td>64</td>
<td>Blue</td>
<td>164</td>
<td>GPO 6 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>65</td>
<td>Tan</td>
<td>165</td>
<td>Reverse Warning</td>
<td>Vehicle System or VIM-F2</td>
</tr>
<tr>
<td>66</td>
<td>Yellow</td>
<td>166</td>
<td>CAN 2 High</td>
<td>IES CAN A or H</td>
</tr>
<tr>
<td>67</td>
<td>N/A</td>
<td>167</td>
<td>CAN 2 Shield</td>
<td>IES CAN C or S</td>
</tr>
<tr>
<td>68</td>
<td>Green</td>
<td>168</td>
<td>CAN 1 Low</td>
<td>J1939 B or L</td>
</tr>
<tr>
<td>69</td>
<td>Gray</td>
<td>169</td>
<td>Battery (–)</td>
<td>Vehicle System or VIM-A1</td>
</tr>
<tr>
<td>70</td>
<td>Pink</td>
<td>170</td>
<td>Battery (+)</td>
<td>Vehicle System or VIM-E1</td>
</tr>
<tr>
<td>71</td>
<td>Yellow</td>
<td>171</td>
<td>HSD2</td>
<td>Trans Connector (Pin 6)</td>
</tr>
<tr>
<td>72</td>
<td>Blue</td>
<td>172</td>
<td>SAE J1708 Low</td>
<td>J1708 Low</td>
</tr>
<tr>
<td>73</td>
<td>Orange</td>
<td>173</td>
<td>Strip Shift Selector Bit-1</td>
<td>Strip Shift Selector (Pin A)</td>
</tr>
</tbody>
</table>
80-Way TCM Connector (cont’d)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>Blue</td>
<td>174</td>
<td>MAIN MOD Solenoid</td>
<td>Trans Connector (Pin 8)</td>
</tr>
<tr>
<td>75</td>
<td>Orange</td>
<td>175</td>
<td>Retarder Temperature</td>
<td>Retarder Temp (Pin A)</td>
</tr>
<tr>
<td>76</td>
<td>Yellow</td>
<td>176</td>
<td>TransID</td>
<td>Trans Connector (Pin 20)</td>
</tr>
<tr>
<td>77</td>
<td>Green</td>
<td>177</td>
<td>PS1</td>
<td>Trans Connector (Pin 3)</td>
</tr>
<tr>
<td>78</td>
<td>White</td>
<td>178</td>
<td>PCS6</td>
<td>Trans Connector (Pin 7)</td>
</tr>
<tr>
<td>79</td>
<td>Pink</td>
<td>179</td>
<td>GPI 11 (–)</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>80</td>
<td>Orange</td>
<td>181</td>
<td>Turbine Speed Sensor—High</td>
<td>NT-A (4000) or Trans Connector (Pin 13 (3000)</td>
</tr>
</tbody>
</table>
APPENDIX D—WIRE/CONNECTOR CHART

Figure D–2. 20-Way AFL Transmission Connector

20-Way AFL Transmission Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Recommended Wire Color</th>
<th>Recommended Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orange</td>
<td>111</td>
<td>HSD1</td>
<td>TCM-11, TID Wire 176, MAIN MOD-A, PCS4-A, PCS6-A</td>
</tr>
<tr>
<td>2</td>
<td>White</td>
<td>155</td>
<td>PCS4, Low</td>
<td>TCM-55, PCS4-B</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td>177</td>
<td>Pressure Switch PS1 Input</td>
<td>TCM-77, PS1-A</td>
</tr>
<tr>
<td>4</td>
<td>Orange</td>
<td>136</td>
<td>PCS1, Low</td>
<td>TCM-36, PCS1-B</td>
</tr>
<tr>
<td>5</td>
<td>Green</td>
<td>152</td>
<td>PCS2, Low</td>
<td>TCM-52, PCS2-B</td>
</tr>
<tr>
<td>6</td>
<td>Yellow</td>
<td>171</td>
<td>HSD2</td>
<td>TCM-71, PCS1-A, PCS2-A, PCS3-A, SS1-A</td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td>178</td>
<td>PCS6, Low (7-speed only)</td>
<td>TCM-78, PCS6-B</td>
</tr>
<tr>
<td>8</td>
<td>Blue</td>
<td>174</td>
<td>MAIN MOD Solenoid, Low</td>
<td>TCM-74, MAIN MOD-B</td>
</tr>
<tr>
<td>9</td>
<td>Yellow</td>
<td>133</td>
<td>PCS3, Low</td>
<td>TCM-33, PCS3-B</td>
</tr>
<tr>
<td>10</td>
<td>White</td>
<td>151</td>
<td>SS1, Low</td>
<td>TCM-51, SS1-B</td>
</tr>
<tr>
<td>11</td>
<td>Yellow</td>
<td>131</td>
<td>HSD3</td>
<td>TCM-31, TCC-A, SS2-A (7-speed only)</td>
</tr>
<tr>
<td>12</td>
<td>White</td>
<td>137</td>
<td>TCC Solenoid, Low</td>
<td>TCM-37, TCC-B</td>
</tr>
<tr>
<td>13</td>
<td>Orange</td>
<td>180</td>
<td>Turbine Speed Sensor, High (3000 only)</td>
<td>TCM-80, NT-A</td>
</tr>
<tr>
<td>14</td>
<td>Blue</td>
<td>120</td>
<td>Turbine Speed Sensor, Low (3000 only)</td>
<td>TCM-20, NT-B</td>
</tr>
<tr>
<td>15</td>
<td>Blue</td>
<td>116</td>
<td>OLS Input</td>
<td>TCM-16, OLS-B</td>
</tr>
<tr>
<td>16</td>
<td>Pink</td>
<td>112</td>
<td>5V Reference Voltage</td>
<td>TCM-12, OLS-C, TPS-C, RMR-C</td>
</tr>
<tr>
<td>17</td>
<td>Blue</td>
<td>119</td>
<td>SS2, Low (7-speed only)</td>
<td>TCM-19, SS2-B</td>
</tr>
<tr>
<td>18</td>
<td>Tan</td>
<td>154</td>
<td>Sump Temperature Sensor Input</td>
<td>TCM-58, Sump Temp-B</td>
</tr>
<tr>
<td>20</td>
<td>Yellow</td>
<td>176</td>
<td>TransID</td>
<td>TCM-76, Wire 111</td>
</tr>
</tbody>
</table>
Pushbutton Or Lever Shift Selector Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Recommended Wire Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dimmer Input</td>
<td></td>
<td>Vehicle System</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Battery Ground</td>
<td>Battery Ground</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Shift Selector 2 ID</td>
<td>Jumper, if used</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>J1939 Internal Termination Resistor</td>
<td>Shift Selector Pin 16</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Jumper, if used</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CAN High J1939</td>
<td></td>
<td>J1939 A or H</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PWM Directional Signal</td>
<td></td>
<td>TCM-34</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ignition Sense</td>
<td></td>
<td>Vehicle System</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Battery Voltage</td>
<td></td>
<td>Vehicle System</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CAN 1 Shield J1339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>CAN 1 Low</td>
<td></td>
<td>J1939 B or L</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>J1939 Internal Terminal Resistor</td>
<td>Jumper, if used</td>
<td>Shift Selector Pin 7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Jumper, if used</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure D–3. Pushbutton or Lever Shift Selector Connector
APPENDIX D—WIRE/CONNECTOR CHART

Figure D–4. Strip Shift Selector Connector

Strip Shift Selector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Recommended Wire Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Orange</td>
<td>173</td>
<td>Strip Selector, Data Bit 1</td>
<td>TCM-73</td>
</tr>
<tr>
<td>B</td>
<td>Green</td>
<td>153</td>
<td>Strip Selector, Data Bit 2</td>
<td>TCM-53</td>
</tr>
<tr>
<td>C</td>
<td>Blue</td>
<td>114</td>
<td>Strip Selector, Data Bit 4</td>
<td>TCM-14</td>
</tr>
<tr>
<td>D</td>
<td>Tan</td>
<td>138</td>
<td>Strip Selector, Parity</td>
<td>TCM-38</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>150</td>
<td>Lamp Ground</td>
<td>TCM-50</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>103</td>
<td>Digital Ground</td>
<td>TCM-3</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td>Switch Power</td>
<td>Vehicle System</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Yellow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Engine Speed Sensor Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tan</td>
<td>159</td>
<td>Engine Speed Sensor High</td>
<td>TCM-59</td>
</tr>
<tr>
<td>B</td>
<td>Orange</td>
<td>139</td>
<td>Engine Speed Sensor Low</td>
<td>TCM-39</td>
</tr>
</tbody>
</table>

Turbine Speed Sensor Connector (4000 Product Family Only)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Orange</td>
<td>180</td>
<td>Turbine Speed Sensor High</td>
<td>TCM-80</td>
</tr>
<tr>
<td>B</td>
<td>Blue</td>
<td>120</td>
<td>Turbine Speed Sensor Low</td>
<td>TCM-20</td>
</tr>
</tbody>
</table>

Output Speed Sensor Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yellow</td>
<td>160</td>
<td>Output Speed Sensor High</td>
<td>TCM-60</td>
</tr>
<tr>
<td>B</td>
<td>Green</td>
<td>140</td>
<td>Output Speed Sensor Low</td>
<td>TCM-40</td>
</tr>
</tbody>
</table>

Retarder (PCS5 Solenoid)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
<td>115</td>
<td>PCS5 Low</td>
<td>TCM-15</td>
</tr>
<tr>
<td>B</td>
<td>Yellow</td>
<td>131</td>
<td>PCS5 High</td>
<td>TCM-31, TRANS-11</td>
</tr>
</tbody>
</table>
9-Pin Diagnostic Tool Connector For CAN 1

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>109 or 169</td>
<td>Battery Return (–)</td>
<td>TCM-9 or TCM-69</td>
</tr>
<tr>
<td>B</td>
<td>110 or 170</td>
<td>Battery Power (+)</td>
<td>TCM-10 or TCM-70</td>
</tr>
<tr>
<td>C</td>
<td>128 or 148</td>
<td>J1939 High</td>
<td>TCM-28 or TCM-48, J1939-A/H</td>
</tr>
<tr>
<td>D</td>
<td>108 or 168</td>
<td>J1939 Low</td>
<td>TCM-8 or TCM-68, J1939-B/L</td>
</tr>
<tr>
<td>E</td>
<td>149</td>
<td>J1939 Shield/Ground</td>
<td>TCM-49, J1939-C/S</td>
</tr>
<tr>
<td>F</td>
<td>132</td>
<td>Serial Communication (+)</td>
<td>TCM-23, SCI-A</td>
</tr>
<tr>
<td>G</td>
<td>172</td>
<td>Serial Communication (–)</td>
<td>TCM-72, SCI-B</td>
</tr>
</tbody>
</table>
Optional OBD-II Diagnostic Connector

<table>
<thead>
<tr>
<th>Terminal No.*</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gray</td>
<td>109 or 169</td>
<td>Battery Return (–)</td>
<td>TCM-9 or TCM-69, VIWS-P, PSS-P, SSS-P</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td>132</td>
<td>Serial Communication Interface, High</td>
<td>TCM-32, SCI-A</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Blue</td>
<td>172</td>
<td>Serial Communication Interface, Low</td>
<td>TCM-72, SCI-B</td>
</tr>
<tr>
<td>16</td>
<td>Yellow</td>
<td>163</td>
<td>Ignition Sense (+)</td>
<td>TCM-63, VIWS-E</td>
</tr>
</tbody>
</table>

* Terminal number and termination points shown only apply when an Allison Transmission recommended harness configuration and bulkhead connector are used.
Throttle Position Sensor Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Green</td>
<td>158</td>
<td>Analog Return</td>
<td>TCM-58; TRANS-19, RMR-A</td>
</tr>
<tr>
<td>B</td>
<td>Blue</td>
<td>144</td>
<td>TPS Signal</td>
<td>TCM-44</td>
</tr>
<tr>
<td>C</td>
<td>Pink</td>
<td>112</td>
<td>TPS High</td>
<td>TCM-12, RMR-C, TRANS-16</td>
</tr>
</tbody>
</table>

Figure D–8. TPS Connector
Transfer Case Connector (3000 Product Family 7-Speed Only)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
<td>115</td>
<td>PCS5 (Diff Lock) Low</td>
<td>TCM-15</td>
</tr>
<tr>
<td>B</td>
<td>Yellow</td>
<td>131</td>
<td>PCS5 (Diff Lock) High</td>
<td>TCM-31, TRANS-11</td>
</tr>
<tr>
<td>C</td>
<td>Yellow</td>
<td>160</td>
<td>Output Speed Sensor High</td>
<td>TCM-60</td>
</tr>
<tr>
<td>D</td>
<td>Green</td>
<td>140</td>
<td>Output Speed Sensor Low</td>
<td>TCM-40</td>
</tr>
</tbody>
</table>
APPENDIX D—WIRE/CONNECTOR CHART

Retarder Resistance Module/Interface Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Yellow</td>
<td>156</td>
<td>Retarder Mod.</td>
<td>TCM-56</td>
</tr>
<tr>
<td>C</td>
<td>Pink</td>
<td>112</td>
<td>Retarder Mod. High</td>
<td>TCM-12, TRANS-16, TPS-C</td>
</tr>
</tbody>
</table>

Figure D–10. Retarder Resistance Module/Interface Connector
Retarder Temperature Sensor Connector
3000 and 4000 Product Families

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Orange</td>
<td>175</td>
<td>Retarder Temperature Input</td>
<td>TCM-75</td>
</tr>
<tr>
<td>B</td>
<td>Green</td>
<td>158</td>
<td>Analog Return</td>
<td>TCM-58, TRANS-19, RMR-A, TPS-A, Engine Water Temp-B</td>
</tr>
</tbody>
</table>
VIM Connector (Harness)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Gray</td>
<td>169</td>
<td>Battery Return (–)</td>
<td>TCM-69</td>
</tr>
<tr>
<td>A2</td>
<td>Gray</td>
<td>109</td>
<td>Battery Return (–)</td>
<td>TCM-9</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>Yellow</td>
<td>104</td>
<td>GPO 2</td>
<td>TCM-4</td>
</tr>
<tr>
<td>B2</td>
<td>Tan</td>
<td>125</td>
<td>Speedometer Signal</td>
<td>TCM-25</td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>White</td>
<td>124</td>
<td>GPO 4</td>
<td>TCM-24</td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>Tan</td>
<td>141</td>
<td>Neutral Start</td>
<td>TCM-41</td>
</tr>
<tr>
<td>D2</td>
<td>Orange</td>
<td>145</td>
<td>GPO 3</td>
<td>TCM-45</td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>Pink</td>
<td>170</td>
<td>Battery Power (+)</td>
<td>TCM-70</td>
</tr>
<tr>
<td>E2</td>
<td>Pink</td>
<td>110</td>
<td>Battery Power (+)</td>
<td>TCM-10</td>
</tr>
<tr>
<td>E3</td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>Yellow</td>
<td>163</td>
<td>Ignition Sense (+)</td>
<td>TCM-63</td>
</tr>
<tr>
<td>F2</td>
<td>Tan</td>
<td>165</td>
<td>Reverse Warning</td>
<td>TCM-65</td>
</tr>
<tr>
<td>F3</td>
<td>White</td>
<td>130</td>
<td>GPO 1</td>
<td>TCM-30</td>
</tr>
</tbody>
</table>
VIM Connector (Harness 30-Way)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color*</th>
<th>Wire No.*</th>
<th>Description</th>
<th>Termination Point(s)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td></td>
<td>Reverse Warning Relay—Normally Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>Output Wire 145 Relay—Common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>Output Wire 145 Relay—Normally Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>Reverse Warning Relay—Common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>Output Wire 145 Relay—Normally Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td>Ignition Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>Output Wire 130 Relay—Normally Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td>Output Wire 124 Relay—Normally Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td>Output Wire 104 Relay—Normally Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td></td>
<td>Output Wire 124 Relay—Common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td></td>
<td>Output Wire 104 Relay—Common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td></td>
<td>Output Wire 104 Relay—Normally Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td></td>
<td>Neutral Start Relay—Normally Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td>Output Wire 130 Relay—Common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td>Output Wire 130 Relay—Normally Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td></td>
<td>Neutral Start Relay—Common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td>Speedometer—Unfiltered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td></td>
<td>Battery Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td></td>
<td>Battery Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J3</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td></td>
<td>Battery Return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td></td>
<td>Battery Return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Colors, wire numbers, and termination points are determined by OEM electrical system design.
Figure D–14. Resistance Module Type 2—Single Pressure Switch and SCI Interface

Resistance Module Type 2

Terminal No.
A
B

SCI Interface Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
<td>132</td>
<td>Serial Communication Interface, High</td>
<td>TCM-32, 9-pin Diagnostic Tool Connector-F</td>
</tr>
<tr>
<td>B</td>
<td>Blue</td>
<td>172</td>
<td>Serial Communication Interface, Low</td>
<td>TCM-72, 9-pin Diagnostic Tool Connector-G</td>
</tr>
</tbody>
</table>

* Terminal number and termination points shown only apply when an Allison Transmission recommended harness configuration and bulkhead connector are used.
APPENDIX D—WIRE/CONNECTOR CHART

Figure D–15. Resistance Module Type 3—Bendix E-10R Pedal

Resistance Module Type 3

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blue</td>
</tr>
<tr>
<td>B</td>
<td>Violet</td>
</tr>
<tr>
<td>C</td>
<td>Orange</td>
</tr>
<tr>
<td>D</td>
<td>White</td>
</tr>
</tbody>
</table>
Resistance Module Type 5

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>White</td>
</tr>
<tr>
<td>1</td>
<td>Blue</td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>Violet</td>
</tr>
<tr>
<td>4</td>
<td>Green</td>
</tr>
<tr>
<td>5</td>
<td>Yellow</td>
</tr>
<tr>
<td>6</td>
<td>Red</td>
</tr>
</tbody>
</table>

Figure D–16. Resistance Module Type 5—Hand Lever
APPENDIX D—WIRE/CONNECTOR CHART

Figure D–17. Resistance Module Type 7—Dedicated Pedal

Resistance Module Type 7

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Green</td>
</tr>
<tr>
<td>B</td>
<td>Yellow</td>
</tr>
<tr>
<td>C</td>
<td>White</td>
</tr>
</tbody>
</table>
Figure D–18. Resistance Module Type 8—Three Pressure Switch

Resistance Module Type 8

Low Pressure

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire Color</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Blue</td>
<td></td>
</tr>
</tbody>
</table>

Medium Pressure

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire Color</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Orange</td>
<td></td>
</tr>
</tbody>
</table>

High Pressure

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire Color</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Violet</td>
<td></td>
</tr>
</tbody>
</table>
Resistance Module Type 9

Medium Pressure

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
</tr>
<tr>
<td>B</td>
<td>Orange</td>
</tr>
</tbody>
</table>

High Pressure

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White</td>
</tr>
<tr>
<td>B</td>
<td>Violet</td>
</tr>
</tbody>
</table>

Figure D–19. Resistance Module Type 9—Two Pressure Switch
Figure D–20. Oil Level Sensor Plug

3-Way Connector (Redesigned OLS)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Black</td>
<td>158</td>
<td>Analog Return</td>
<td>TRANS-19</td>
</tr>
<tr>
<td>B</td>
<td>White</td>
<td>116</td>
<td>OLS Input</td>
<td>TRANS-15</td>
</tr>
<tr>
<td>C</td>
<td>Red</td>
<td>112</td>
<td>Sensor Power</td>
<td>TRANS-16</td>
</tr>
</tbody>
</table>
APPENDIX D—WIRE/CONNECTOR CHART

Figure D–21. J1939 Interface Connector

J1939 Interface Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or H</td>
<td>Yellow</td>
<td>128</td>
<td>J1939 Controller #1, High</td>
<td>TCM-28 and/or TCM-48</td>
</tr>
<tr>
<td>B or L</td>
<td>Green</td>
<td>108</td>
<td>J1939 Controller #1, Low</td>
<td>TCM-8 and/or TCM-68</td>
</tr>
<tr>
<td>C or S</td>
<td>N/A</td>
<td>149</td>
<td>J1939 Shield #1</td>
<td>TCM-49</td>
</tr>
</tbody>
</table>

IES CAN Interface Connector

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or H</td>
<td>Yellow</td>
<td>106</td>
<td>CAN Controller #2, High</td>
<td>TCM-6 and/or TCM-66</td>
</tr>
<tr>
<td>B or L</td>
<td>Green</td>
<td>127</td>
<td>CAN Controller #2, Low</td>
<td>TCM-27 and/or TCM-47</td>
</tr>
<tr>
<td>C or S</td>
<td>N/A</td>
<td>167</td>
<td>CAN Shield #2</td>
<td>TCM-67</td>
</tr>
</tbody>
</table>
Appendix D—Wire/Connector Chart

Accumulator (SS2) Solenoid

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color</th>
<th>Wire No.</th>
<th>Description</th>
<th>Termination Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blue</td>
<td>119</td>
<td>SS2 Low</td>
<td>TCM-19</td>
</tr>
<tr>
<td>B</td>
<td>Yellow</td>
<td>131</td>
<td>SS2 High</td>
<td>TCM-31, TRANS-11</td>
</tr>
</tbody>
</table>

Figure D–22. Retarder Accumulator Solenoid Connector
Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Special Tools Required To Service Allison 4th Generation Controls Wiring Harnesses</td>
<td>E–2</td>
</tr>
<tr>
<td>E–1 AFL Automotive 80F Bolt Assist Connectors (TCM Connector)</td>
<td>E–7</td>
</tr>
<tr>
<td>E–2 AFL Automotive 80F CAM-Assist Connectors (TCM Connector)</td>
<td>E–14</td>
</tr>
<tr>
<td>E–3 AFL Automotive 20-Way Bolt-Assist Connectors (TCM Connector)</td>
<td>E–18</td>
</tr>
<tr>
<td>E–4 Delphi-Packard Micro-Pack 100W Connectors (CAN and Strip Shift Selectors)</td>
<td>E–23</td>
</tr>
<tr>
<td>E–5 Delphi-Packard GT150 Series Connectors—Push-to-Seat (Speed Sensor; Retarder Solenoid)</td>
<td>E–28</td>
</tr>
<tr>
<td>E–6 Delphi-Packard Metri-Pack 150 Series Connectors—Push-to-Seat (Turbine Speed Sensor; 30-Way and 18-Way VIM; Retarder Temperature Sensor; and Retarder Accumulator Solenoid)</td>
<td>E–31</td>
</tr>
<tr>
<td>E–9 Delphi-Packard Metri-Pack 280 Series Connectors—Pull-to-Seat (Internal Harness Solenoid and C3 Pressure Switch)</td>
<td>E–40</td>
</tr>
<tr>
<td>E–10 Delphi-Packard WeatherPack Connectors (TPS; 3-Way RMR Sensor; 3-Way RMR Device (Dedicated Pedal))</td>
<td>E–42</td>
</tr>
<tr>
<td>E–11 Amp Products Connectors (8-Way RMR Device (Hand Lever))</td>
<td>E–46</td>
</tr>
<tr>
<td>E–12 Deutsch IPD/ECD Connectors (J1939 Diagnostic Data Link 9-Way Diagnostic Tool Connector)</td>
<td>E–48</td>
</tr>
<tr>
<td>E–13 ITT Cannon Connectors—Crimped (Bulkhead 6-Way Transfer Case)</td>
<td>E–51</td>
</tr>
<tr>
<td>E–14 Deutsch DT Series Connectors (3-Way J1939 Connector)</td>
<td>E–54</td>
</tr>
<tr>
<td>E–15 Repair of a Broken Wire with In-Line Butt Splice</td>
<td>E–56</td>
</tr>
<tr>
<td>E–16 AFL Automotive 2-Way, 90 Degree Solenoid Connector</td>
<td>E–59</td>
</tr>
</tbody>
</table>

NOTE: Allison Transmission is providing for service of wiring harnesses and wiring harness components as follows:

- Repair parts for the internal wiring harness and for wiring harness components attached to the shift selector will be available through the Allison Transmission Parts Distribution Center (PDC). Use the P/N from your appropriate parts catalog or from Appendix E in this manual. Allison Transmission is responsible for warranty on these parts.

- Repair parts for the external harnesses and external harness components must be obtained from St. Clair Technologies Inc. (SCTI). SCTI provides parts to any Allison customer or OEM and is responsible for warranty on these parts. SCTI recognizes Allison Transmission, manufacturers, and SCTI part numbers. SCTI provides a technical HELPLINE at 519-627-1673 (Wallaceburg). SCTI will have parts catalogs available. The SCTI addresses and phone numbers for parts outlets are:

 St. Clair Technologies, Inc.
 920 Old Glass Road
 Wallaceburg, Ontario, Canada N8A 4L8
 Phone: 519-627-1673
 Fax: 519-627-4227

 St. Clair Technologies, Inc.
 Calle Damanti S/N Col Guadalupe—Guaymas
 Sonora, Mexico CP85440
 Phone: 011-526 2222-43834
 Fax: 011-526-2222-43553
List Of Special Tools Required To Service Allison 4th Generation Controls Wiring Harnesses

<table>
<thead>
<tr>
<th>Tool Number</th>
<th>Tool Type</th>
<th>Paragraph Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>23046604</td>
<td>Splice, Sealed (14–16 AWG)</td>
<td>E–15</td>
</tr>
<tr>
<td>23046605</td>
<td>Splice, Sealed (18–22 AWG)</td>
<td>E–15</td>
</tr>
<tr>
<td>J 25070</td>
<td>Heat Gun</td>
<td>E–15</td>
</tr>
<tr>
<td>J 34182</td>
<td>Crimping Tool</td>
<td>E–12, E–13, E–14</td>
</tr>
<tr>
<td>J 34513</td>
<td>Remover Tool</td>
<td>E–12</td>
</tr>
<tr>
<td>J 35123</td>
<td>Crimping Tool (Alternate)</td>
<td>E–5, E–6, E–7</td>
</tr>
<tr>
<td>J 35606</td>
<td>Crimping Tool (Alternate)</td>
<td>E–10</td>
</tr>
<tr>
<td>J 35615</td>
<td>Wire Stripper</td>
<td>E–6, E–7, E–9, E–15</td>
</tr>
<tr>
<td>J 35689-A</td>
<td>Remover Tool</td>
<td>E–5, E–6, E–7, E–8</td>
</tr>
<tr>
<td>J 38125-6</td>
<td>Crimping Tool</td>
<td>E–10</td>
</tr>
<tr>
<td>J 38125-7</td>
<td>Crimping Tool</td>
<td>E–5, E–6, E–7, E–9, E–11</td>
</tr>
<tr>
<td>J 38125-8</td>
<td>Crimping Tool</td>
<td>E–16</td>
</tr>
<tr>
<td>J 38125-10</td>
<td>Remover Tool</td>
<td>E–10</td>
</tr>
<tr>
<td>J 38125-12A</td>
<td>Crimping Tool</td>
<td>E–1, E–2, E–3, E–16</td>
</tr>
<tr>
<td>J 38125-13</td>
<td>Remover Tool</td>
<td>E–11, E–16</td>
</tr>
<tr>
<td>J 38528-3</td>
<td>Remover Tool</td>
<td>E–12</td>
</tr>
<tr>
<td>J 38852</td>
<td>Crimping Tool (Alternate)</td>
<td>E–10</td>
</tr>
<tr>
<td>J 39227</td>
<td>Remover Tool</td>
<td>E–4</td>
</tr>
<tr>
<td>J 39842</td>
<td>Terminal Remover/Installer (3000 7-Speed T-Case)</td>
<td>E–13</td>
</tr>
<tr>
<td>J 41193</td>
<td>Connector Repair Kit (FMTV)</td>
<td>E–13</td>
</tr>
<tr>
<td>J 41193-1</td>
<td>Guide Pin</td>
<td>E–13</td>
</tr>
<tr>
<td>J 41193-2</td>
<td>Insertion Tool</td>
<td>E–13</td>
</tr>
<tr>
<td>J 41194</td>
<td>Extractor/Inserter</td>
<td>E–12</td>
</tr>
<tr>
<td>J 42215</td>
<td>Crimping Tool</td>
<td>E–8</td>
</tr>
<tr>
<td>J 47139</td>
<td>Crimping Tool</td>
<td>E–1, E–2, E–3</td>
</tr>
</tbody>
</table>
Figure E–1A. AFL 80F Bolt-Assist TCM Connector
Figure E–1B. AFL 80F Bolt-Assist, Direction ‘A’ 90 Degree TCM Connector
Figure E–1C. AFL 80F Bolt-Assist, Direction ‘B’ 90 Degree TCM Connector
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

E–1. AFL AUTOMOTIVE 80F BOLT ASSIST CONNECTORS (TCM CONNECTOR)

A. TCM Connector, Assembly 80F Bolt Assist (refer to Figure E–1A)

Required Tools

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimping Tool</td>
<td>J 47139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remover Tool</td>
<td>J 38125-12A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connector Assembly, 80F, Bolt Assist

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM Connector 80F, Bolt Kit, Connector Assembly, 80F, Bolt Assist</td>
<td>300278</td>
<td>R-61991-001</td>
<td>E-4540</td>
</tr>
<tr>
<td></td>
<td>Connector Assembly, 80F, Bolt</td>
<td>300243</td>
<td>E-4539</td>
</tr>
<tr>
<td></td>
<td>Spacer 80F</td>
<td>300244</td>
<td>E-4538</td>
</tr>
<tr>
<td></td>
<td>Seal, Interfacial</td>
<td>300245</td>
<td>E-4543-001</td>
</tr>
<tr>
<td></td>
<td>Connector Body, 80F Bolt</td>
<td>300246</td>
<td>E-4544</td>
</tr>
<tr>
<td></td>
<td>Bolt</td>
<td>300247</td>
<td>E-4545</td>
</tr>
<tr>
<td></td>
<td>Seal, Bolt</td>
<td>300245</td>
<td>E-4545</td>
</tr>
<tr>
<td></td>
<td>Retainer Bolt</td>
<td>300246</td>
<td>E-4545</td>
</tr>
<tr>
<td></td>
<td>Grommet, Wire Seal</td>
<td>300247</td>
<td>E-4541</td>
</tr>
<tr>
<td></td>
<td>Grommet, Retainer</td>
<td>300244</td>
<td>E-4542</td>
</tr>
<tr>
<td></td>
<td>Cover A, Wire Dress</td>
<td>300245</td>
<td>E-4550</td>
</tr>
<tr>
<td></td>
<td>Cover B, Wire Dress</td>
<td>300246</td>
<td>E-4551</td>
</tr>
<tr>
<td></td>
<td>Terminal, Receptacle</td>
<td>300247</td>
<td>33001-0004</td>
</tr>
<tr>
<td></td>
<td>Plug, Cavity Seal</td>
<td>300008</td>
<td>12034413</td>
</tr>
</tbody>
</table>

Wire Cover Kit 80W Bolt

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Cover Kit 80W Bolt Cover A, Wire Dress</td>
<td>300235</td>
<td>E-4550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cover B, Wire Dress</td>
<td>300246</td>
<td>E-4551</td>
</tr>
</tbody>
</table>

Bolt Kit

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt Kit</td>
<td>300234</td>
<td>E-4543-001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bolt</td>
<td>300234</td>
<td>E-4544</td>
</tr>
<tr>
<td></td>
<td>Seal, Bolt</td>
<td>300234</td>
<td>E-4545</td>
</tr>
</tbody>
</table>
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

B. TCM Connector, Assembly 80F Bolt Assist, Direction ‘A’ 90 Degree Wire Dress (refer to Figure E–1B)

Required Tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimping Tool</td>
<td>J 47139</td>
</tr>
<tr>
<td>Remover Tool</td>
<td>J 38125-12A</td>
</tr>
</tbody>
</table>

Use

<table>
<thead>
<tr>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM Connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kit, Connector Assembly, 80F, Bolt Assist, 90 Degree, Dir A</td>
<td>300243</td>
<td>R-61991-001</td>
</tr>
<tr>
<td>Connector Assembly, 80F, Bolt, 90 Degree, Dir A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacer, 80F</td>
<td>E-4540</td>
<td></td>
</tr>
<tr>
<td>Seal, Interfacial</td>
<td>E-4539</td>
<td></td>
</tr>
<tr>
<td>Connector Body, 80F Bolt</td>
<td>E-4538</td>
<td></td>
</tr>
<tr>
<td>Bolt</td>
<td>E-4543-001</td>
<td></td>
</tr>
<tr>
<td>Seal, Bolt</td>
<td>E-4544</td>
<td></td>
</tr>
<tr>
<td>Retainer, Bolt</td>
<td>E-4545</td>
<td></td>
</tr>
<tr>
<td>Grommet, Wire Seal</td>
<td>E-4541</td>
<td></td>
</tr>
<tr>
<td>Grommet, Retainer</td>
<td>E-4542</td>
<td></td>
</tr>
<tr>
<td>Cover, Wire Dress, 80F, Dir A</td>
<td>E-6206-002</td>
<td></td>
</tr>
<tr>
<td>Cover, Bottom</td>
<td>E-4555</td>
<td></td>
</tr>
<tr>
<td>Terminal, Receptacle</td>
<td>300247</td>
<td>33001-0004</td>
</tr>
<tr>
<td>Plug, Cavity Seal</td>
<td>300008</td>
<td>12034413</td>
</tr>
</tbody>
</table>

Wire Cover Kit 80W Bolt

<table>
<thead>
<tr>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover, Wire Dress, 80F, Dir A</td>
<td>300236</td>
<td>E-6206-001</td>
</tr>
<tr>
<td>Cover, Bottom</td>
<td>E-4555</td>
<td></td>
</tr>
</tbody>
</table>

Read disassembly process/procedure thoroughly before beginning disassembly.
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

C. TCM Connector, Assembly 80F Bolt Assist, Direction ‘B’ 90 Degree Wire Dress (refer to Figure E–1C)

Required Tools

- Crimping Tool J 47139
- Remover Tool J 38125-12A

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM Connector 80F, Bolt</td>
<td>Kit, Connector Assembly, 80F, Bolt Assist, 90 Degree, Dir B</td>
<td>300278</td>
<td>300243 R-61991-001</td>
</tr>
<tr>
<td></td>
<td>Connector Assembly, 80F, Bolt, 90 Degree, Dir B</td>
<td>300243</td>
<td>R-61991-001</td>
</tr>
<tr>
<td></td>
<td>Spacer 80F</td>
<td>300244</td>
<td>E-4542</td>
</tr>
<tr>
<td></td>
<td>Seal, Interfacial</td>
<td>E-4540</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connector Body, 80F Bolt</td>
<td>E-4538</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bolt</td>
<td>E-4543-001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seal, Bolt</td>
<td>E-4544</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retainer, Bolt</td>
<td>E-4545</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grommet, Wire Seal</td>
<td>E-4541</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grommet, Retainer</td>
<td>300244</td>
<td>E-4542</td>
</tr>
<tr>
<td></td>
<td>Cover, Wire Dress, 80F, Dir B</td>
<td>E-6206-001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cover, Bottom</td>
<td>300247 E-4556</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminal, Receptacle</td>
<td>300008 12304413</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plug, Cavity Seal</td>
<td>300008 12304413</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wire Cover Kit 80W Bolt</td>
<td>300237</td>
<td>E-6206-002</td>
</tr>
<tr>
<td></td>
<td>Cover, Wire Dress, 80F, Dir B</td>
<td>E-6206-002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cover, Bottom</td>
<td>E-4555</td>
<td></td>
</tr>
</tbody>
</table>

D. Terminal Removal

1. Loosen the bolt (Figure E–1A, B, or C, View B) that retains 80-way connector to the transmission control module (TCM).
2. Separate the 80-way connector from the TCM.
3. Refer to the proper Figure for the connector being used:
 a. Refer to Figure E–1A, View B. Use a small-bladed screwdriver to gently unlatch the retention features (4) of the wire dress cover and separate the two halves.
 b. Refer to Figures E–1B or E–1C, View B. Use a small-bladed screwdriver to gently unlatch the retention features (2) of the wire dress cover and remove it from the backshell wire dress. Gently release the retention features (4) of the backshell wire dress and remove it from the connector body.
4. Insert a small-bladed screwdriver in between the connector body and the grommet retainer (Figure E–1A, B, or C, View B) and carefully pry the grommet retainer away from the connector body. Slide the grommet retainer along the wires away from the connector body. If the grommet seal stayed with the connector body, also slide it away from the connector body and seat it into the grommet retainer, allowing better access to the wires.
D. Terminal Removal (cont’d)

5. Insert a small-bladed screwdriver through the slot in the connector body (being careful not to damage the green interfacial seal) and apply upward pressure on the red spacer until it lifts to the pre-stage location on one side (approximately 1/8 inch). Repeat this process on the other side so it is removed evenly. Carefully continue to evenly lift the red spacer out of the connector body until the four lock tabs release. Remove the red spacer completely. The red spacer must be replaced if any of the four lock tabs are broken during removal.

6. Make a note for reassembly purposes of which wire (number) goes into which terminal cavity in the connector body.

7. Insert the metal blade of J 38125-12A or J 39227 removal tool into the small hole in the front of the connector body above or below the desired terminal/wire lead cavity location (See Figures E–1A, B, or C, View A).

8. Remove the selected terminal by gently lifting the locking finger with the removal tool and pulling the wire and terminal rearward out of the connector.

NOTE: Care should be taken not to damage or break the terminal locking fingers during removal. If a locking finger is damaged or broken, proper terminal retention will be lost after reassembly.

E. Terminal Crimping

1. Carefully strip the insulation from the wire to leave 4.70–5.60 mm (0.185–0.220 inch) of bare wire (core) exposed.

2. Refer to Figures E–1A, B, or C, View C. Pull out the wire stop blade of the crimping tool so it is clear of the terminal crimp area. Place the terminal all the way into the appropriate wire size opening of the J 47139 crimping tool until it contacts the stop and is properly oriented. Squeeze the handle enough to keep the terminal in place in the tool but not enough to compress the crimp wings.

3. Push in the wire stop blade until it touches the terminal. Insert the wire core into the terminal, with the core held against the wire stop blade.

4. Hold the wire and terminal against the stops until the terminal is fully crimped. Squeeze the crimper handle until the ratchet releases.

5. Pull out the wire stop blade and remove the crimped terminal and wire.

NOTE: If cavities do not have a terminal/wire lead or grommet cover pin (or if grommet cover pin is damaged) install cavity plug #12034413 into corresponding cavity in grommet seal in connector body.

6. Repeat as necessary.

7. Slide the grommet retainer containing the grommet seal along the wires and snap it into place on the connector body.

8. When all terminals have been inserted, be sure the green interfacial seal is properly located on the connector body and not damaged. Install the red spacer into the connector body. Push it into the connector body until it is fully seated against the connector body.
E. Terminal Crimping (cont’d)

NOTE: If the red spacer will not seat properly on the connector body, be sure all terminals are fully seated.

9. Refer to the proper Figure for the connector being used:

 a. Refer to Figure E–1A. Align and press together the two halves of the wire dress cover until they lock. Align the four retention features on the wire dress cover with the four lock tabs on the grommet retainer and press the wire dress cover onto the grommet retainer until all four retention features lock.

 b. Refer to Figures E–1B or E–1C. Align the four retention features of the backshell wire dress with the four lock tabs on the grommet retainer and press the backshell wire dress onto the grommet retainer until all four retention features lock. Align the wire dress cover with the backshell wire dress and press into place until it locks on both sides.

10. Reconnect the 80-way connector to the TCM and tighten connector bolt to specified torque value (N·m) shown on the wire dress cover (DO NOT OVER-TORQUE).
Figure E–2A. AFL 80F Cam-Assist, Direction ‘A’ TCM Connector
Figure E–2B. AFL 80F Cam-Assist, Direction ‘B’ TCM Connector
E-2. AFL AUTOMOTIVE 80F CAM-ASSIST CONNECTORS (TCM CONNECTOR)

A. Connector, Assembly 80F Cam-Assist, ‘A’ Direction (refer to Figure E–2A)

Required Tools
- Crimping Tool: J 47139
- Remover Tool: J 38125-12A

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>St. Clair P/N</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM Connector</td>
<td>Kit, Connector Assembly, 80F, Cam-Assist, Dir A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connector Assembly, 80F, Cam-Assist, Dir A</td>
<td>R-62004-001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cam-Assist, Dir A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacer, 80F</td>
<td>E-4540</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seal, Interfacial</td>
<td>E-4539</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connector Body, 80F, Cam</td>
<td>E-4547</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cam, Left</td>
<td>E-4554</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cam, Right</td>
<td>E-4553</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handle, Cam</td>
<td>E-4548</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retainer, Bolt</td>
<td>E-4545</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grommet, Wire Seal</td>
<td>E-4541</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grommet, Retainer</td>
<td>300244</td>
<td>E-4542</td>
</tr>
<tr>
<td></td>
<td>Cover, Wire Dress and CPA</td>
<td>E-4589</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cover, Bottom</td>
<td>E-4555</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminal, Receptacle</td>
<td>300247</td>
<td>33001-0004</td>
</tr>
<tr>
<td></td>
<td>Plug, Cavity Seal</td>
<td>300008</td>
<td>12034413</td>
</tr>
<tr>
<td>Wire Cover Kit 80W Cam, Dir A</td>
<td>300238</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cover, Wire Dress and CPA</td>
<td>E-4555</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cover, Bottom</td>
<td>E-4589</td>
<td></td>
</tr>
</tbody>
</table>
B. Connector, Assembly 80F Cam-Assist, ‘B’ Direction (refer to Figure E–2B)

Required Tools

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimping Tool</td>
<td>J 47139</td>
</tr>
<tr>
<td>Remover Tool</td>
<td>J 38125-12A</td>
</tr>
</tbody>
</table>

Use | Description | St. Clair P/N | Manufacturers P/N |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM Connector Kit, Connector Assembly, 80F, Cam-Assist, Dir B</td>
<td>R-62004-002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector Assembly, 80F, Cam-Assist, Dir B</td>
<td>E-4540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacer, 80F</td>
<td>E-4539</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal, Interfacial</td>
<td>E-4547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector Body, 80F, Cam</td>
<td>E-4554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cam, Left</td>
<td>E-4553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cam, Right</td>
<td>E-4548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handle, Cam</td>
<td>E-4545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retainer, Bolt</td>
<td>E-4541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grommet, Wire Seal</td>
<td>E-4542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grommet, Retainer</td>
<td>300244 E-4542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover, Wire Dress and CPA</td>
<td>E-4588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover, Bottom</td>
<td>E-4555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal, Receptacle</td>
<td>300247 33001-0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plug, Cavity Seal</td>
<td>300008 12034413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire Cover Kit 80W Cam, Dir B</td>
<td>300239 E-4555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover, Wire Dress and CPA</td>
<td>E-4588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover, Bottom</td>
<td>E-4588</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Read disassembly process/procedure thoroughly before beginning disassembly.

C. Connector Removal (Figures E–2A or B, View B)

1. Remove the CPA from the secondary lever lock and press in on the secondary lever lock while moving the cam lock handle to the unlatched position.
2. Separate connector from Transmission Control Module (TCM).

NOTE: Do not attempt to move CAM lever after it is disengaged from the TCM, doing so can break the internal latching mechanism.

3. Refer to Figures E–2A or B, View B. Use a small-bladed screwdriver to gently unlatch the retention features (2) of the wire dress cover and remove it from the backshell wire dress. Gently release the retention features (4) of the backshell wire dress and remove it from the connector body.

4. Insert a small-bladed screwdriver in between the connector body and the grommet retainer (Figure E–2A or B, View B) and carefully pry the grommet retainer away from the connector body. Slide the grommet retainer along the wires away from the connector body. If the grommet seal stayed with the connector body, also slide it away from the connector body and seat it into the grommet retainer, allowing better access to the wires.
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

C. Connector Removal (Figures E–2A or B, View B) (cont’d)

5. Insert a small-bladed screwdriver through the slot in the connector body (being careful not to damage the blue interfacial seal) and apply upward pressure on the red spacer until it lifts to the pre-stage location on one side (approximately \(\frac{1}{8} \) inch). Repeat this process on the other side so it is removed evenly. Carefully continue to evenly lift the red spacer out of the connector body until the four lock tabs release. Remove the red spacer completely. The red spacer must be replaced if any of the four lock tabs are broken during removal.

6. Make a note for reassembly purposes of which wire (number) goes into which terminal cavity in the connector body.

7. Insert the metal blade of J 38125-12A or J 39227 remover tool into the small hole in the front of the connector body above or below the desired terminal/wire lead cavity location (See Figures E–2A or B, View A).

8. Remove the selected terminal by gently lifting the locking finger with the remover tool and pulling the wire and terminal rearward out of the connector.

NOTE: Care should be taken not to damage or break the terminal locking finger during removal. If the locking finger is damaged or broken, proper terminal retention will be lost after reassembly.

D. Terminal Crimping

1. Carefully strip the insulation from the wire to leave 4.70–5.60 mm (0.185–0.220 inch) of bare wire (core) exposed.

2. Refer to Figures E–2A or B, View C. Pull out the wire stop blade of the crimping tool so it is clear of the terminal crimp area. Place the terminal all the way into the appropriate wire size opening of the J 47139 crimping tool until it contacts the stop and is properly oriented. Squeeze the handle enough to keep the terminal in place in the tool but not enough to compress the crimp wings.

3. Push in the wire stop blade until it touches the terminal. Insert the wire core into the terminal, with the core held against the wire stop blade.

4. Hold the wire and terminal against the stops until the terminal is fully crimped. Squeeze the crimper handle until the ratchet releases.

NOTE: If cavities do not have a terminal/wire lead or grommet cover pin (or if grommet cover pin is damaged) install cavity plug #12034413 into corresponding cavity in grommet seal in connector body.

5. Repeat as necessary.

6. Slide the grommet retainer containing the grommet seal along the wires and snap it into place on the connector body.

7. When all terminals have been inserted, be sure the green interfacial seal is properly located on the connector body and is not damaged. Install the red spacer into the connector body. Push it into the connector body until it is fully seated against the connector body.

NOTE: If the red spacer will not seat properly on the connector body, be sure all terminals are fully seated.

8. Refer to Figures E–2A or B, View B. Align the four retention features of the backshell wire dress with the four lock tabs on the grommet retainer and press the backshell wire dress onto the grommet retainer until all four retention features lock. Align the wire dress cover with the backshell wire dress and press into place until it locks on both sides.

9. To reconnect the 80-way connector to the TCM:
 a. Bring the connector to TCM “squared up”, not at an angle.
 b. Keeping hands away from the handle, squarely press the connector onto the TCM until the cam lever handle moves of its own accord approximately \(\frac{3}{4} \) inch.
 c. Gently complete mating the connector to the TCM by moving the cam lever handle to the locked position.
 d. Slide the CPA back toward the secondary lock.
Figure E–3. AFL Automotive 20-Way, Bolt-Assist TCM Connector
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

E–3. AFL AUTOMOTIVE 20-WAY BOLT-ASSIST CONNECTORS (TCM CONNECTOR)

A. Connector/Terminal Tools

Read disassembly process/procedure thoroughly before beginning disassembly.

1. Loosen the bolt (Figure E–3, View B) that retains 20-way connector to the transmission pass-through connector.
2. Separate the 20-way connector from the transmission pass-through connector.
3. Use a small-bladed screwdriver to gently unlatch the retention features (2) of the wire dress cover and remove it from the backshell wire dress. Gently release the retention features (3) of the backshell wire dress and remove it from the connector body.
4. Insert a small-bladed screwdriver in between the connector body and the grommet retainer (Figure E–1A, B, or C) and carefully pry the grommet retainer away from the connector body. Slide the grommet retainer along the wires away from the connector body. If the grommet seal stayed with the connector body, also slide it away from the connector body and seat it into the grommet retainer, allowing better access to the wires (only required when adding or deleting circuits).
A. Connector/Terminal Tools (cont’d)

5. Make a note for reassembly purposes of which wire (number) goes into which terminal cavity in the connector body.

6. Insert a small-bladed screwdriver through the slot in the connector body (being careful not to damage the interfacial seal) and apply upward pressure on the spacer until it lifts to the pre-stage location on one side (approximately \(\frac{1}{8}\) inch). Repeat this process on the other side so it is removed evenly. Carefully continue to evenly lift the spacer out of the connector body until the two lock tabs release. Remove the spacer completely. The spacer must be replaced if any one of the four retention features is broken during removal.

7. Insert the metal blade of J 38125-12A or J 39227 remover tool into the small hole in the front of the connector body above or below the desired terminal/wire lead cavity location (See Figures E–3, View A).

8. Remove the selected terminal by gently lifting the locking finger with the remover tool and pulling the wire and terminal rearward out of the connector.

NOTE: Care should be taken not to damage or break a terminal locking finger during removal. If a locking finger is damaged or broken, proper terminal retention will be lost after reassembly.

B. Terminal Crimping

1. Carefully strip the insulation from the wire to leave 4.70–5.60 mm (0.185–0.220 inch) of bare wire (core) exposed.

2. Refer to Figures E–3, View C. Pull out the wire stop blade of the crimping tool so it is clear of the terminal crimp area. Place the terminal all the way into the appropriate wire size opening of the J 47139 crimping tool until it contacts the stop and is properly oriented. Squeeze the handle enough to keep the terminal in place in the tool but not enough to compress the crimp wings.

3. Push in the wire stop blade until it touches the terminal. Insert the wire core into the terminal, with the core held against the wire stop blade.

4. Hold the wire and terminal against the stops until the terminal is fully crimped. Squeeze the crimmer handle until the ratchet releases.

5. Pull out the wire stop blade and remove the crimped terminal.

NOTE: If cavities do not have a terminal/wire lead or grommet cover pin (or if grommet cover pin is damaged) install cavity plug #12034413 into corresponding cavity in grommet seal in connector body.

6. Repeat as necessary.

7. Slide the grommet retainer containing the grommet seal along the wires and snap it into place on the connector body (only if removed).

8. Be sure the interfacial seal is properly located on the connector body and not damaged. Install the spacer into the connector body. Push it into the connector body until it is fully seated against the connector body.

NOTE: If the spacer will not seat properly on the connector body, be sure all terminals are fully seated.

9. Refer to Figures E–3, View A. Align the three retention features of the backshell wire dress with the three lock tabs on the grommet retainer and press the backshell wire dress onto the grommet retainer until all three retention features lock. Align the wire dress cover with the backshell wire dress and press into place until it locks on both sides.

10. Reconnect the 20-way connector to the transmission pass-through connector and tighten connector bolt to specified torque value (N·m or lb ft) shown on the wire dress cover (DO NOT OVER-TORQUE).
Figure E–4A. Delphi-Packard Micro Pack 16-Way 180 Degree Connector
Figure E–4B. Delphi-Packard Micro Pack 16-Way 90 Degree Connector
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

Figure E–4C. Delphi-Packard Micro Pack Connector (Strip Shift Selector)

Lock terminal here
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

E–4. DELPHI-PACKARD MICRO PACK 100W CONNECTORS
(CAN AND STRIP SHIFT SELECTORS)

A. Connector/Terminal Repairs

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN Shift Selector, 90 Degree</td>
<td>Kit, CAN Shift Selector, 90 Degree
Connector, 16F
Seal, 16-way
TPA Retainer, 16F
Strain Relief, 16F, 90 Degree
Terminal, 0.8 mm Wire
Cavity Plug
CPA Lock M/P</td>
<td>300279</td>
<td>12191065
300255</td>
</tr>
<tr>
<td>CAN Shift Selector, 180 Degree</td>
<td>Kit, CAN Shift Selector, 180 Degree
Connector, 16F
Seal, 16-way
TPA Retainer, 16F
Strain Relief, 16F, 180 Degree
Terminal, 0.8 mm Wire
Cavity Plug
CPA Lock M/P</td>
<td>300280</td>
<td>12191065
300255</td>
</tr>
<tr>
<td>Strip Shift Selector, Harness</td>
<td>Connector
Wire Seal
Secondary Lock
Terminal, Socket
Cavity Plug
Conduit Clip</td>
<td>12160280</td>
<td>15304882
12160494</td>
</tr>
<tr>
<td>Strip Shift Selector, Device</td>
<td>Connector, Gray
Wire Seal
Lock Assist/Seal
Terminal, Pin
Cavity Plug
Conduit Clip, Black</td>
<td>12160542</td>
<td>12110693
12191176</td>
</tr>
</tbody>
</table>

Crimping Tool J 42215
Remover Tool J 39227
B. Terminal Removal

1. CAN Shift Selector Harness Connectors (Figure E–4A, 4B, and 4C)

 a. Use a small-bladed screwdriver to gently release the locktabs at the splitline of the strain relief.
 b. Spread the strain relief open.
 c. Remove the retainer from the connector by using a small-bladed screwdriver to depress the
 locktabs on the side of the connector.
 d. Remove a selected terminal by pushing forward on the wire or by lifting the locking finger and
 pulling the wire and terminal rearward out of the connector.

2. Strip Shift Selector (Device) Connectors (Figure E–4C)

 a. Lift locktab on the side of the connector and remove the lock assist.
 b. Open the conduit clip on the back of the connector after lifting locktabs on each side and sliding
 clip back to release it from connector.
 c. Use the J 39227 tool to release the locking finger inside the connector and pull the terminal/wire
 out the rear of the connector.

3. Strip Shift Selector Harness Connectors (Figure E–4C)

 a. Carefully insert a small screwdriver blade between the connector body and the secondary lock.
 Twist/pry to remove the secondary lock from the connector body.
 b. Open the conduit clip on the back of the connector after lifting locktabs on each side and sliding
 clip back to release it from connector.
 c. Use the J 39227 tool to release the locking finger inside the connector and pull the terminal/wire
 out the rear of the connector.

C. Terminal Crimping

1. Carefully strip insulation to leave 5.0 mm ± 0.5 mm (0.20 ± 0.02 inch) of bare wire showing.

2. Insert the new terminal to be crimped in the J 42215 crimping tool. There is a spring-loaded
 terminal positioner at the front of the tool to hold the terminal in place. Squeeze the crimper
 handles for a few clicks to start the crimping process but leave room to insert the wire end.

3. Insert the bare wire end into the terminal. Squeeze the crimper handles to complete the crimping
 process and until the crimper handles open when released to remove the terminal/wire from the
 tool.
C. Terminal Crimping (cont’d)

4. Complete terminal installation for Strip Shift Selector Connectors as follows: (Figure E–4C)
 a. Insert the wire seal in the back of the connector.
 b. Push the terminal/wire assembly through the proper hole in the back of the wire seal. Push the wire in until the terminal clicks into position. Gently pull rearward on the wire to be sure that the terminal is fully seated. Install cavity plugs as needed.
 c. Install the lock assist or secondary lock into the connector body.
 d. Close the conduit clip around the conduit and lock the clip into the rear of the connector body.

5. Complete terminal installation of the CAN Shift Selector Connectors as follows: (Figure E–4A and E–4B)
 a. Align the locking posts on the connector with the seal and push the locking posts through the seal into the mating holes in the strain relief (if the connector was removed from the strain relief).
 b. Push the terminal/wire assembly through the proper hole in the back of the seal. Push the wire in until the terminal clicks into position.

 NOTE: All terminals must be properly positioned to install the retainer in Step (5c).

 c. Install the retainer on the connector body to lock the terminals in position. Pull rearward on the wire to be sure that the terminal is fully seated. Install cavity plugs as needed.
 d. Position the conduit inside the strain relief and snap the strain relief halves together.
Figure E–5A. Delphi-Packard Metri-Pack GT150 Series Connectors—Push-to-Seat
(Speed Sensor; Accumulator Solenoid; Retarder Solenoid)
Figure E–5B. Delphi-Packard GT150 Series Connectors—Push-to-Seat (Speed Sensor; Accumulator Solenoid; Retarder Solenoid)
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

E–5. DELPHI-PACKARD GT150 SERIES CONNECTORS—PUSH-TO-SEAT (SPEED SENSOR; RETARDER SOLENOID)

A. Connector/Terminal Repairs

<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Stripper</td>
<td>J 35615</td>
</tr>
<tr>
<td>Crimp Tool</td>
<td>Delphi 15359996</td>
</tr>
<tr>
<td>Alternate Crimp Tool</td>
<td>J 38125-6 Anvil “I”</td>
</tr>
<tr>
<td></td>
<td>J 38125-7 Anvil “E”</td>
</tr>
<tr>
<td>Remover Tool</td>
<td>J 38125-12A</td>
</tr>
<tr>
<td>Alternate Removal Tool</td>
<td>J 35689-A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N (Current)</th>
<th>Manufacturers P/N (Former)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT Turbine Speed (Nt) Sensor (4000 Product Family) Speed Sensor</td>
<td>Kit, GT150, Speed Sensor Connector Assembly</td>
<td>300227</td>
<td>13520101</td>
<td>15490464</td>
</tr>
<tr>
<td></td>
<td>Connector Assembly</td>
<td>300260</td>
<td>15496486</td>
<td></td>
</tr>
<tr>
<td>GT Engine/Output (All Models) (Ne/No) Speed Sensor</td>
<td>Terminal</td>
<td>300261</td>
<td>15326267</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable Seal</td>
<td>300263</td>
<td>15305351</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convolute Capture, TPA</td>
<td>300064</td>
<td>15358890</td>
<td></td>
</tr>
<tr>
<td>Retarder Solenoid (PCS5)</td>
<td>Connector Assembly</td>
<td>13523048</td>
<td>13513314</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connector Assembly</td>
<td></td>
<td>15496486</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>15326267</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable Seal</td>
<td>15305351</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convolute Capture, TPA</td>
<td>15358890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retarder Accumulator</td>
<td>Connector Assembly</td>
<td>13520104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenoid</td>
<td>Cable Seal</td>
<td>15305351</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>15326267</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPA</td>
<td>15496486</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convolute Capture, TPA</td>
<td>15358890</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Terminal Removal

NOTE: Do not solder crimps.

1. The CPA lock has two positions. The fully locked position retains the connector to the mating connector. The second position allows the connector to be released from the mating connector. To facilitate terminal removal, completely remove the CPA lock by depressing the lock tang and pulling the lock up and away from the connector (Figure E–5A, View A).

2. Remove the convolute capture from the rear of the GT150 connector by raising the retainer clip and pulling on the harness.

3. Remove the convolute capture from the convolute by applying pressure with a small-bladed screwdriver inserted into the front locking tang. Repeat the process on the rear locking tang and open the capture. The wires are now loose in the convolute and can be pulled out a short distance to make terminal installation easier.

4. Two different connector caps, “bowtie” or “mushroom”, are used (Figure E–5B, View A). Each connector cap has two stops (Figure E–5B, View C). The cap must be completely removed from
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

the connector in order to remove and install a wire and terminal. Remove the appropriate connector cap from the connector by carefully prying up on the cap and push it away from the connector past the lock tab, so that it completely clears the connector. Be sure seal is not damaged.

5. Insert the J 38125-12A removal tool between the terminal lock finger and the terminal (Figure E–5B, View B) and carefully lift the finger while pulling the wire and terminal rearward from the connector body (Figure E–5A, View A).

6. If the terminal is to be replaced, cut the terminal between the core and insulation crimp to minimize wire loss.

C. Terminal Crimping—(Delphi 15359996 Crimping Tool)

1. Carefully strip the wire of enough insulation to expose 4.5 mm ± 0.5 mm (0.18 ± 0.02 inch) of bare wire (core).

2. Install a seal onto the wire (Figure E–5D, View D).

3. Pull out the wire stop blade of the crimping tool so it is clear of the terminal crimp area (Figure E–5A, View C). Place the terminal all the way into the appropriate wire size opening of the J 47139 crimping tool until it contacts the stop and is properly oriented. Squeeze the handle just enough to maintain pressure on the terminal so it does not drop out of the tool, but not enough to compress the crimp wings.

4. Push in the wire stop blade until it touches the terminal. Insert the wire core into the terminal, with the core held against the wire stop blade. Position the seal on the wire so the small diameter is in the insulation crimp wing (Figure E–5B, View D).

5. Hold the wire and terminal against the stops and be sure the seal is in the insulation crimp wing. Squeeze the crimping tool handle until it releases. Pull out the wire stop blade and remove the wire and terminal from the tool.

6. Lightly pull on the wire while holding the terminal to be sure the crimp is tight.

7. Repeat as needed to crimp another wire.

8. Insert the terminal and sealed wire into the connector (Figure E–5B, View D) until it stops. Lightly pull on the wire to be sure it is held in the connector by the terminal lock finger.

9. Install connector cap (Figure E–5B, View A) onto front of connector body.

10. Close the convolute capture over the convolute until both locks are engaged.

11. Push the convolute capture into the connector body until both locks are engaged. Install the CPA lock onto the connector body.

D. Terminal Crimping Using Alternate Tool J 38125-6 and J 38125-7

1. Use J 38125-7 to crimp the wire core. Place core crimp portion of terminal onto bed of anvil “E” and squeeze crimper enough to keep terminal from dropping.

2. Position wire core in terminal and squeeze crimmer tool to complete the core crimp. Be sure to orient the terminal so that it is properly aligned with the terminal cavity in the connector. The terminal should be positioned so that the notch on top of the terminal is aligned with the locking finger in the connector cavity.

3. Position the wire seal between the two insulation crimping tabs (Figure E–5B, View D).

4. Use J 38125-6 to crimp the insulation over the wire seal. Position insulation crimp of terminal on anvil “I” so that the entire insulation crimp area and a portion of the terminal between the core and insulation crimp areas are supported by the anvil. Complete the insulation crimp.
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

Figure E–6. Delphi-Packard Metri-Pack 150 Series connectors Pull-To-Seat
(Turbine Speed Sensor: 30-Way and 18-Way VIM; Retarder Temperature Sensor; Retarder Accumulator Solenoid)
E–6. DELPHI-PACKARD METRI-PACK 150 SERIES CONNECTORS—PULL-TO-SEAT
(TURBINE SPEED SENSOR; 30-WAY AND 18-WAY VIM; RETARDER TEMPERATURE SENSOR; RETARDER ACCUMULATOR SOLENOID)

A. Connector/Terminal Repairs

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine Speed (Nt) Sensor (3000 Product Family)</td>
<td>Connector</td>
<td>15490953</td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>12110236</td>
</tr>
<tr>
<td>Vehicle Interface Module (VIM)</td>
<td>Connector (VIM)</td>
<td>Connector Body</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-Way Seal (x2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30-Way Strain Relief</td>
</tr>
<tr>
<td></td>
<td>Special Bolt</td>
<td>12129426</td>
</tr>
<tr>
<td></td>
<td>Bolt Retainer</td>
<td>12034236</td>
</tr>
<tr>
<td></td>
<td>Sealing Ring</td>
<td>12034413</td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>12103881</td>
</tr>
<tr>
<td>Vehicle Interface Module (Vehicle)</td>
<td>Connector (VIM)</td>
<td>Connector Body</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-Way Seal (x2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-Way Strain Relief</td>
</tr>
<tr>
<td></td>
<td>Special Bolt</td>
<td>12129426</td>
</tr>
<tr>
<td></td>
<td>Bolt Retainer</td>
<td>12034236</td>
</tr>
<tr>
<td></td>
<td>Sealing Ring</td>
<td>12034413</td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>12103881</td>
</tr>
<tr>
<td>Vehicle Interface Module (Vehicle)</td>
<td>Connector (OEM)</td>
<td>Connector Body</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-Way Seal (x2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30-Way Strain Relief</td>
</tr>
<tr>
<td></td>
<td>Special Bolt</td>
<td>12129426</td>
</tr>
<tr>
<td></td>
<td>Bolt Retainer</td>
<td>12034236</td>
</tr>
<tr>
<td></td>
<td>Sealing Plug</td>
<td>12034413</td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>12103881</td>
</tr>
<tr>
<td>Retarder Temperature Sensor</td>
<td>Connector Assembly, 2F M/P 150</td>
<td>Connector Body, Black</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connector Seal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable Seal</td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>12124075</td>
</tr>
<tr>
<td>Retarder Accumulator Solenoid</td>
<td>Connector Assembly, 2F M/P 150</td>
<td>Connector Body, Black</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connector Seal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable Seal</td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>12124075</td>
</tr>
</tbody>
</table>
B. Terminal Removal

NOTE: Do not solder crimps.

1. Insert needle end of terminal remover J35689-A into the small notch between the connector and the terminal to be removed (Figure E–6, View A). Push the lock tang toward the terminal.

2. Push the wire and terminal out of the connector—this is a “pull-to-seat” terminal.

3. Pull terminal as far as necessary from the connector. This will be limited by the number of other wires inserted into the connector and by the distance between the back side of the connector and the beginning of the harness covering.

4. If terminal is to be replaced, cut the terminal between the core and insulation crimp to minimize wire loss.

C. Terminal Crimping—VIM, Speed Sensor, Retarder Temperature Sensor, and Retarder Accumulator Solenoid Terminals (Standard Crimping Tool)

1. If a spare wire is used, the wire should be pushed through the proper hole in the strain relief (if used), through the wire seal, and out the other side of the connector before stripping.

2. Carefully strip insulation 4.5 mm ± 0.5 mm (0.18 ± 0.02 inch). Unless insulation crimp is overtight, Automatic Wire Stripper J35615 will remove insulation and crimp from old terminal without damaging wire.

3. Place core crimp portion of terminal on bed of anvil “E” and squeeze crimper enough to keep terminal from dropping (Figure E–6, View B).

4. Position wire core in terminal and squeeze crimper tool to complete the core crimp. Be sure to orient the terminal so that it is properly aligned with the terminal cavity in the connector. The terminal should be positioned so that the lock tang is on the side of the cavity which has the notch in the middle (for the remover tool).

5. Position insulation crimp of terminal on anvil “C” so that the entire insulation crimp area and a portion of the terminal between the core and insulation crimp areas are supported by the anvil. Complete the insulation crimp.

6. Be sure lock tang is lifted to allow proper reseating of the terminal.

7. Pull on the wire to pull the terminal completely into the cavity. A click will be heard and the terminal should stay in place if the wire is pushed.

D. Terminal Crimping Using Alternate Tool J35123

1. If a spare wire is used, the wire should be pushed through the proper hole in the strain relief (if used) and the wire seal, and out the other side of the connector prior to stripping.

2. Insert remover tool in front side of connector to release locktab and push terminal out front of connector. Pull the terminal and wire out the front of the connector to complete Steps (3) through (7).

3. Push open the terminal holder on the crimper tool J35123 and insert a terminal into the opening marked 18–16 (Figure E–6, View C) so that the crimp ends point up. Release the terminal holder.

4. Slightly close the crimping tool (close until one click is heard) but do not start to crimp the terminal. Place the terminal on the wire so it is in the same position as it will be when pulled back into the connector. The terminal should be positioned so that the lock tang is on the side of the cavity which has the notch in the middle (for the remover tool).
D. Terminal Crimping Using Alternate Tool J 35123 (cont’d)

5. Insert the wire into the terminal until the wire contacts the holder. By doing this, the core and insulation should be properly positioned for the core and insulation crimp wings.

6. Squeeze the crimper fully until it opens when released.

7. Open the terminal holder and remove the wire and terminal from the crimping tool.

8. Pull on the terminal to assure a tight crimp.

9. Be sure lock tang is lifted to allow proper reseating of the terminal.

10. Pull on the wire to pull the terminal completely into the cavity. A click will be heard and the terminal should stay in place if the wire is pushed.
Figure E–7. Delphi-Packard Metri-Pack 150 Series Connectors Push-To-Seat (Oil Level Sensor)
E–7. DELPHI-PACKARD METRI-PACK 150 SERIES CONNECTORS—PUSH-TO-SEAT (OIL LEVEL SENSOR)

A. Connector/Terminal Repairs

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Stripper</td>
<td>J 35615</td>
<td></td>
</tr>
<tr>
<td>Crimping Tool</td>
<td>J 38125–7</td>
<td></td>
</tr>
<tr>
<td>Wire Crimp</td>
<td>Anvil “E”</td>
<td></td>
</tr>
<tr>
<td>Insulation Crimp</td>
<td>Anvil “C”</td>
<td></td>
</tr>
<tr>
<td>Alternate Crimping Tool</td>
<td>J 35123</td>
<td></td>
</tr>
<tr>
<td>Remover Tool</td>
<td>J 35689–A</td>
<td></td>
</tr>
</tbody>
</table>

B. Terminal Removal

NOTE: Do not solder crimps.

1. Remove the secondary lock.
2. Insert needle end of terminal remover J 35689-A into the small notch between the connector and the terminal to be removed (Figure E–7, View A). Push the lock tang toward the terminal.
3. Pull the wire and terminal out the rear of the connector—this is a “push-to-seat” terminal.
4. Pull terminal as far as necessary from the connector. This will be limited by the number of other wires inserted into the connector and by the distance between the back side of the connector and the beginning of the harness covering.
5. If terminal is to be replaced, cut the terminal between the core and insulation crimp to minimize wire loss.

C. Terminal Crimping

1. Carefully strip insulation 4.5 mm ± 0.5 mm (0.18 ± 0.02 inch). Unless insulation crimp is overtight, Automatic Wire Stripper J 35615 will remove insulation and crimp from old terminal without damaging wire.
2. Place core crimp portion of terminal on bed of anvil “E” and squeeze crimper enough to keep terminal from dropping (Figure E–7, View C).
3. Position wire core in terminal and squeeze crimper tool to complete the core crimp. Be sure to orient the terminal so that it is properly aligned with the terminal cavity in the connector. The terminal should be positioned so that the lock tang is on the side of the cavity which has the notch in the middle (for the remover tool).
4. Position insulation crimp of terminal on anvil “C” so that the entire insulation crimp area and a portion of the terminal between the core and insulation crimp areas are supported by the anvil. Complete the insulation crimp.
5. Be sure lock tang is lifted to allow proper reseating of the terminal.
6. Push on the wire until the terminal is completely into the cavity. A click will be heard and the terminal should stay in place when the wire is lightly pulled.
D. Terminal Crimping Using Alternate Tool J 35123

1. Insert remover tool in front side of connector to release locktab and pull terminal out rear of connector. Pull the terminal and wire out the rear of the connector to complete Steps (3) through (7).

2. Push open the terminal holder on the crimper tool J 35123 and insert a terminal into the opening marked 18–16 (Figure E–7, View B) so that the crimp ends point up. Release the terminal holder.

3. Slightly close the crimping tool (close until one click is heard) but do not start to crimp the terminal. Place the terminal on the wire so it is in the same position as it will be when pulled back into the connector. The terminal should be positioned so that the lock tang is on the side of the cavity which has the notch in the middle (for the remover tool).

4. Insert the wire into the terminal until the wire contacts the holder. By doing this, the core and insulation should be properly positioned for the core and insulation crimp wings.

5. Squeeze the crimper fully until it opens when released.

6. Open the terminal holder and remove the wire and terminal from the crimping tool.

7. Pull on the terminal to assure a tight crimp.

8. Be sure lock tang is lifted to allow proper reseating of the terminal.

9. Push on the wire until the terminal is completely into the cavity. A click will be heard and the terminal should stay in place if the wire is lightly pulled.
Figure E–8. Delphi-Packard Metri-Pack 150 Series Connector—Push-To-Seat (All Models, Sump Temperature Thermistor)
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOLS PART NUMBERS, AND REPAIR INSTRUCTIONS

E–8. DELPHI-PACKARD METRI-PACK 150 SERIES CONNECTORS—PUSH-TO-SEAT (ALL MODELS, SUMP TEMPERATURE THERMISTOR)

A. Connector/Terminal Repairs

Crimping Tool J 42215 (with terminal positioner removed)
Remover Tool J 35689-A

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Models, TransID 2 and Later</td>
<td>Sump Temperature Sensor</td>
<td>12129691</td>
</tr>
<tr>
<td>Sump Temperature Thermistor</td>
<td>Connector, Black</td>
<td>12047662</td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>12047767</td>
</tr>
<tr>
<td></td>
<td>Secondary Lock</td>
<td>12047664</td>
</tr>
</tbody>
</table>

B. Terminal Removal

1. Remove the secondary lock from the connector.
2. Insert needle end of terminal remover J 35689-A into the small notch in the front of the connector cavity of the terminal to be removed (Figure E–8).
3. Push the lock tang toward the terminal.
4. Pull the wire and terminal out of the connector.
5. Cut the terminal between the core and insulation crimp to minimize wire loss.

C. Terminal Crimping

1. Strip insulation approximately 4.5 mm (0.18 inch).
2. Remove the spring-loaded terminal positioner from the J 42215 crimping tool.
3. Insert the new terminal to be crimped in the J 42215 crimping tool. Squeeze the crimper handles a couple clicks to start the crimping process but leave room to insert the wire end.
4. Insert the bare wire end into the terminal. Squeeze the crimper handles to complete the crimping process and until the crimper handles open when released to remove the terminal/wire from the tool.
5. Be sure the lock tang is positioned to allow proper retention of the terminal in the connector.
6. Push the terminal completely into the cavity. A click will be heard and the terminal should stay in place if the wire is pulled.
7. Install the secondary lock in the connector.
Figure E–9. Delphi-Packard Metri-Pack 280 Series Connectors—Pull-to-Seat
(Internal Harness On/Off Solenoid and PS1 Pressure Switch)

VIEW A

VIEW B

Copyright © 2005 General Motors Corp.
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

E–9. DELPHI-PACKARD METRI-PACK 280 SERIES CONNECTORS—PULL-TO-SEAT (INTERNAL HARNESS ON/OFF SOLENOID AND PS1 PRESSURE SWITCH)

A. Connector/Terminal Repairs

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift Solenoid/PS1 Pressure Switch (Switch)</td>
<td>Connector</td>
<td>29541590</td>
</tr>
<tr>
<td>PS1 Pressure Switch (Harness)</td>
<td>Connector</td>
<td>12110139</td>
</tr>
<tr>
<td>Shift Solenoid/PS1 Pressure Switch (Switch)</td>
<td>Terminal (Use crimping anvils “C” and “D”)</td>
<td>12124639</td>
</tr>
<tr>
<td>PS1 Pressure Switch (Harness)</td>
<td>Terminal (Use crimping anvils “C” and “D”)</td>
<td>12066337</td>
</tr>
</tbody>
</table>

NOTE: Crimping anvils will be listed following the terminal part numbers for the various connectors in this section. The anvil for the core crimp is always listed first.

B. Terminal Removal

1. Depress locktab on terminal (accessible in slot of connector) and push terminal out front of connector (Figure E–9, View A).

2. If replacing terminal, cut terminal between core and insulation crimp (to minimize wire loss).

C. Terminal Crimping

1. Carefully strip insulation 6.5 mm ± 0.5 (0.26 ± 0.02 inch). Unless insulation crimp is overtight, Automatic Wire Stripper J 35615 will remove insulation and crimp from old terminal without damaging wire.

2. Place core crimp portion of terminal on bed of anvil indicated and squeeze crimper enough to hold terminal from dropping (Figure E–9, View B).

3. Position wire core in terminal and squeeze crimper tool to complete the core crimp. Be sure to orient the terminal so that it is properly aligned with the terminal cavity in the connector.

4. Position insulation crimp of terminal on anvil indicated so that the entire insulation crimp area and a portion of the terminal between the core and insulation crimp areas are supported by the anvil. Complete the insulation crimp.

5. Slip the wire through the slot in the connector and pull to fully seat the terminal(s).
Figure E–10. Delphi-Packard WeatherPack Connectors (TPS; 3-Way RMR Sensor; Type 3; 3-Way RMR Device (Dedicated Pedal))
E–10. DELPHI-PACKARD WEATHERPACK CONNECTORS (TPS; 3-WAY RMR SENSOR; 3-WAY RMR DEVICE (DEDICATED PEDAL))

A. Connector/Terminal Repairs

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throttle Position (TPS)</td>
<td>Connector</td>
<td>12015793</td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>12089040</td>
</tr>
<tr>
<td></td>
<td>Wire Seal</td>
<td>12089444</td>
</tr>
<tr>
<td>RMR Device</td>
<td>Connector</td>
<td>12015795</td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>12089040</td>
</tr>
<tr>
<td></td>
<td>Wire Seal</td>
<td>12089444</td>
</tr>
<tr>
<td>Retarder Temperature Sensor</td>
<td>Connector</td>
<td>12010973</td>
</tr>
<tr>
<td></td>
<td>Terminal (Socket)</td>
<td>12089188</td>
</tr>
<tr>
<td></td>
<td>Wire Seal</td>
<td>12089444</td>
</tr>
</tbody>
</table>
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

B. Terminal Removal

1. Unlatch and open the secondary lock on the connector (Figure E–10, View A).

2. On the front of the connector, insert remover tool J 38125-10 over the terminal. Push the tool over the terminal and pull the terminal out of the back end of the connector (Figure E–10, View B).

3. If terminal is to be replaced, cut terminal between core and insulation crimp (this minimizes wire loss).

NOTE: Two special tools are available for this operation: tool J 38125-6 (Paragraph C); tool J 35606 (Figure E–11) or J 38852 (Paragraph D).

C. Terminal Crimping Using Crimping Tool J 38125-6

1. Place the wire seal onto the wire before stripping the wire (Figure E–10, View C).

2. Strip wire to 6.0 ± 0.25 mm (0.24 ± 0.01 inch).

3. Place terminal onto crimping tool J 38125-6 (Figure E–10, View E), anvil “2.”

4. Slightly close crimping tool to hold terminal steady.

5. Insert wire so that the stripped portion of wire is in the core crimp area and the insulated portion of the wire is in the insulation crimping area (Figure E–10, View C).

6. Crimp the stripped section of the wire.

7. Remove the terminal from the crimping tool.

8. Push the wire seal into the terminal (Figure E–10, View D). The second crimp will wrap around the wire seal. This will seal the insulated area of wire.

9. Use a pair of needle nose pliers, if necessary, to squeeze the terminal wings together to fit in anvil “5.”

10. Crimp wire seal in anvil “5.”

11. Tug on terminal and be sure the crimp is tight.

12. Insert the terminal into the connector. The terminal will “click” into place and should not pull out.

13. Secure the secondary lock. Both sides of the connector must be latched.

D. Terminal Crimping Using Alternate Crimper Pliers J 35606 or J 38852

1. Place the wire seal onto the wire before stripping the wire (Figure E–10, View C).

2. Strip wire to 6.0 ± 0.25 mm (0.24 ± 0.01 inch).

3. Insert terminal into crimping tool J 35606 (Figure E–11, View A), opening marked 18–20.

4. Position the terminal so the crimp wings are pointing up from the bottom jaw of the crimper and are properly positioned.

5. Slightly close the crimping tool to hold the terminal steady.

6. Slide the wire seal to the edge of the insulation and insert the wire and seal into the terminal (Figure E–11, View B).
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

D. Terminal Crimping Using Alternate Crimper Pliers J 35606 or J 38852 (cont’d)

7. Position the wire and seal and squeeze the crimping tool until it opens when released.
8. Tug on terminal to be sure the crimp is tight.
9. Insert terminal into connector. The terminal will “click” into place and should not pull out.
10. Relatch the secondary lock. Both sides of the connector must be latched.
Figure E–12. Amp Products Connectors (8-Way RMR Device (Hand Lever))
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

E–11. AMP PRODUCTS CONNECTORS (8-WAY RMR DEVICE (HAND LEVER))

A. Connector/Terminal Repairs

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimping Tool</td>
<td>J 38125-7</td>
<td></td>
</tr>
<tr>
<td>Wire Crimp</td>
<td>Anvil “E”</td>
<td></td>
</tr>
<tr>
<td>Insulation Crimp</td>
<td>Anvil “A”</td>
<td></td>
</tr>
<tr>
<td>Remover Tool</td>
<td>J 38125-13</td>
<td></td>
</tr>
</tbody>
</table>

B. Terminal Removal

1. Insert removal tool J 38125-13 into the small notch at the front of the connector to release the terminal locktab (Figure E–12, View A).
2. Pull the terminal and wire out the back of the connector.
3. If replacing terminal, cut terminal between core and insulation crimp (this minimizes wire loss).

C. Terminal Crimping

1. Strip wire to approximately 4.0 ± 0.25 mm (0.16 ± 0.01 inch) (Figure E–12, View B).
2. Place new terminal onto crimping tool J 38125-7, anvil “E” (Figure E–12, View C).
3. Slightly close the crimping tool to hold the terminal steady.
4. Insert the wire so that the stripped portion of the wire is in the core crimp area and the insulated portion of the wire is in the insulation crimping area.
5. Crimp the stripped section of the wire (Figure E–12, View B).
6. Remove the terminal from the crimping tool.
7. Use a pair of needle nose pliers, if necessary, to start the bend on the insulation crimp wings.
8. Crimp the insulated section of the wire using anvil “A” of the crimpers (Figure E–9, View C).
9. Remove the terminal from the crimping tool.
10. Tug on the terminal to make sure the crimp is tight.
11. Insert the terminal into the connector. The terminal will “click” into place and should not pull out.
Figure E–13. Deutsch IPD/ECD Connectors (9-Way Optional Diagnostic Tool Connector)
E–12. DEUTSCH IPD/ECD CONNECTORS (J1939 DIAGNOSTIC DATA LINK 9-WAY DIAGNOSTIC TOOL CONNECTOR)

A. Connector/Terminal Repairs

Required Tools

<table>
<thead>
<tr>
<th>Required Tools</th>
<th>P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimper Tool</td>
<td>J 34182</td>
<td></td>
</tr>
<tr>
<td>Extractor/Inserter Tool</td>
<td>J 41194</td>
<td>(18 GA ECD Bulkhead)</td>
</tr>
<tr>
<td>Remover Tool Set 1</td>
<td>J 34513</td>
<td></td>
</tr>
<tr>
<td>Remover Tool (Diagnostic Tool Connector)</td>
<td>J 38528-3</td>
<td>(12–14 GA)</td>
</tr>
</tbody>
</table>

Use Description

<table>
<thead>
<tr>
<th>Use Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1939 Diagnostic Link (9-way Diagnostic Tool Connector)</td>
<td>300217</td>
<td>HD10-9-1939P</td>
</tr>
<tr>
<td>Kit, J1939 9-Way Diagnostic Link Receptacle</td>
<td>300267</td>
<td>0460-202-1631</td>
</tr>
<tr>
<td>Connector, 9-Way</td>
<td>300007</td>
<td>0460-247-1631</td>
</tr>
<tr>
<td>Contact, Pin</td>
<td>300273</td>
<td>114017</td>
</tr>
<tr>
<td>Contact, Pin Extract</td>
<td>300000</td>
<td></td>
</tr>
<tr>
<td>Seal Plug</td>
<td>300269</td>
<td>HD18</td>
</tr>
<tr>
<td>Strain Relief</td>
<td>300268</td>
<td>HDC16-6</td>
</tr>
<tr>
<td>Cap, Connector</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: If difficulty is encountered in removing or installing the plug backshell, insert the plug into the receptacle, but do not lock it into place, and loosen the backshell.

B. Terminal Removal (Figure E–13, View A)

NOTE: When using remover/inserter tool J 41194, take care not to break the tip of the tool. Lay the wire in the widest part of the wire slot and work toward the tool tip.

1. Loosen and slide the backshell along the convolute conduit.
2. Remove the convolute conduit from the base of the backshell follower. Peel enough conduit from the harness to allow working access.
3. Slide the backshell follower clear of the connector housing.
4. Remove as much tape wrap as necessary to allow working access.
5. Fully insert the proper remover/extractor tool into the back of the connector until it releases the terminal.
6. Pull the terminal, wire, and tool out the back of the connector.
7. If replacing the terminal, cut the wire through the middle of the terminal crimp (this minimizes wire loss).

C. Terminal Crimping (Figure E–13, View B)

1. Strip approximately 6–8 mm (0.236–0.315 inch) of insulation from the wire.
2. Set the crimping tool wire size to number 18. Tot set the wire size, remove the retainer pin. Lift and rotate the indicator until the number 12 is aligned with the SEL NO arrow. Reinstall the retainer pin.
C. Terminal Crimping (Figure E–9, View B) (cont’d)

3. Insert the contact end of the terminal into crimping tool J 34182. To adjust the crimping tool depth, loosen the locking ring until the depth adjusting screw is free. Turn the adjusting screw until the top of the terminal is just above flush with the top of the crimping hole (the crimp jaws will contact the middle of the terminal barrel). Tighten the locking ring to retain the adjustment.

4. Fully insert the wire into the terminal so that the stripped portion of the wire is in the crimp area. A small section (0.5-1.0 mm or 0.02-0.04 inch) of wire will be visible above the terminal barrel.

5. Squeeze the crimping tool handle until it releases. The terminal is now crimped onto the wire.

6. Remove the terminal and wire from the crimping tool.

7. Tug on the terminal to ensure the crimp is tight.

8. Install a 25 mm (one inch) long piece of heat shrink tubing over the wire insulation just behind the terminal. Apply heat to shrink and lock tubing to the insulation.

D. Terminal Insertion (ECD Bulkhead)

1. Insert the terminal and attached wire through the proper hole in the grommet.

2. Push on the terminal and wire until the terminal clicks into position. Pull gently on the wire to be sure that the terminal is fully seated.
Figure E–14. ITT Cannon Connectors—Crimped (Bulkhead; 6-Way Transfer Case)
A. Connector/Terminal Repair

Crimping Tool
Connector Repair Kit (FMTV) J 34182
Guide Pin J 41193-1
Insertion Tool J 41193-2
Terminal Remover J 41193-3
Terminal Remover/Installer J 39842
(3000 7-Speed T-Case Connector)

Use Description Manufacturers P/N
3000 Product Family FMTV 37-Way Plug Assembly CA3106E28-21P-B
37-Way Receptacle Assembly CA3100E28-21S-B
3000 Product Family Transfer Case 6-Way Plug Assembly KPSE06E10-6S
Terminal (Socket) 031-9174-004
Cavity Plug 225-0070-000
6-Way Receptacle Assembly KPSE07E10-6P
Terminal (Pin) 030-9173-006
Cavity Plug 225-0070-000

B. Terminal Removal (Figure E–14, View A and B)

1. Select the remover tool for the plug or receptacle that is being repaired.

2. For the FMTV connector, choose either the pin or socket terminal remover tip and lock it into the handle.

3. Place the tip of the remover tool over the pin or into the socket and push the contact/terminal out the rear of the connector using slow, even pressure.

4. Pull the wire and terminal out the back of the connector.

5. If replacing the terminal, cut the wire through the middle of the terminal crimp to minimize wire loss.

C. Terminal Crimping (Figure E–14, View C)

1. Strip approximately 6–8 mm (0.24–0.31 inch) of insulation from the wire.

2. Set the crimping tool wire size to number 18. To set the wire size, remove the retainer pin. Lift and rotate the indicator until 18 is aligned with the SEL NO. arrow. Reinstall the retainer pin.
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

C. Terminal Crimping (Figure E–14, View C) (cont’d)

3. Insert the contact end of the terminal down into crimping tool J 34182. Adjust the crimping tool depth by loosening the locking ring until the depth adjusting screw is free and turning the adjusting screw until the wire end of the terminal is just above flush with the top of the crimping hole. The crimp jaws will now contact the middle of the terminal barrel. Tighten the lock ring to retain the adjustment.

4. Fully insert the wire into the terminal so that the stripped portion of the wire is in the crimp area. A small section (0.5–1.0 mm (0.020–0.040 inch)) of wire will be visible above the terminal barrel.

5. Squeeze the crimping tool handle until it releases. The terminal is now crimped onto the wire.

6. Remove the terminal and wire from the crimping tool.

7. Tug on the terminal to ensure the crimp is tight.

D. Terminal Insertion

1. Select the proper insertion tool for the connector or receptacle that is being reassembled.

2. Place the terminal and wire in the insertion tool (Figure E–14, View A and B).

NOTE: When installing a socket terminal for the FMTV plug, use the J 41193-1 guide pin.

3. Insert the terminal through the correct hole in the back of the connector and push until the terminal is seated. Remove the insertion tool. Check to see that the terminal is at the same height as other terminals. Tug on the wire at the rear of the connector to ensure that the terminal is locked in place.

4. Insert cavity plugs into all unused cavities.
Figure E–15. Deutsch DT Series Connector (3-Way J1939 Interface)
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

E–14. DEUTSCH DT SERIES CONNECTORS (3-WAY J 1939 INTERFACE)

A. Connector/Terminal Repairs

Crimping Tool: J 34182

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>St. Clair P/N</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1939 Interface, Plug (Typically on backbone side)</td>
<td>Kit, J1939, 3-way Plug</td>
<td>300283</td>
<td>DT06-3S-EP11</td>
</tr>
<tr>
<td></td>
<td>Connector, Plug, 3-way</td>
<td>300206</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wedgelock, Plug</td>
<td>300275</td>
<td>W3S-P012</td>
</tr>
<tr>
<td></td>
<td>Contact, Socket #16</td>
<td>300005</td>
<td>0462-201-1631</td>
</tr>
<tr>
<td></td>
<td>Contact, Extended Socket</td>
<td>300035</td>
<td>0462-221-1631</td>
</tr>
<tr>
<td></td>
<td>Heat Shrink</td>
<td>300274</td>
<td>ATUM-3/4-0</td>
</tr>
</tbody>
</table>

J1939 Interface, Receptacle (Typically on module side)	Kit, J1939, 3-way Receptacle	300282	
	Connector, Recept, 3-way	300270	DT06-3P-EE01
	Wedgelock, Receptacle	300271	W3P
	Contact, Pin #16	300007	0462-202-1631
	Contact, Extended Pin	300273	0462-247-1631
	Heat Shrink	300274	ATUM-3/4-0
	Resistor (optional)	300272	DT06-3S-P006

B. Terminal Removal (Figure E–15)

1. Use a small-bladed screwdriver to remove the secondary lock that holds the terminals in place.
2. Use a sharp knife to carefully remove the shrink tubing from the rear of the connector plug.
3. Use a small screwdriver to release the locking lever from all of the terminals. Pull the wire and terminal out of the rear of the connector.
4. Slide a new piece of shrink tubing over the removed terminals an onto the cable.
5. If replacing the terminal, cut the wire through the middle of the terminal. Pull the wire and terminal out the rear of the connector.

C. Terminal Crimping (Figure E–15)

1. Stripe 6–8 mm (0.24–0.31 inch) of insulation from the wire. There is no insulation on the shield wire.
2. Set the crimping tool wire size to number 18. To set the wire size, remove the retainer pin. Lift and rotate the indicator until 18 is aligned with the SEL NO. arrow. Reinstall the retainer pin.
3. Insert the contact end of the terminal into crimping tool J 34182. Adjust the crimping tool depth by loosening the locking ring until the depth adjusting screw is free. Turn the adjusting screw until the wire end of the terminal is just above flush with the top of the crimping hole. The depth adjustment screw will have to be backed out enough to accept the extended shield terminal. The crimp jaws will now contact the middle of the terminal barrel. Tighten the locking ring to maintain the adjustment.
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

C. Terminal Crimping (Figure E–15) (cont’d)

4. Fully insert the wire into the terminal so that the stripped portion of the wire is in the crimp area. A small section (0.5–1.0 mm or 0.02–0.04 inch) of wire will be visible above the terminal barrel.

5. Squeeze the crimping tool until it releases. The terminal is now crimped onto the wire.

6. Remove the terminal and wire from the crimping tool.

7. Tug on the terminal to be sure the crimp is tight.

D. Terminal Insertion

1. Slide the wire with the crimped terminal attached into the rear of the connector.

2. Push the terminal and wire into the connector until it locks into position. (Figure E–15). Check the front of the connector to see that the terminal is at the same height as the other terminals. Tug on the wire at the rear of the connector to be sure that the terminal is locked in place.

3. Insert the wedge lock to hold the terminal in place. Slide the sealing plug back into place at the rear of the connector.

4. Slide the shrink tubing over the raised area at the rear of the connector. Use a heat gun to shrink the tubing into position over the connector and cable.
E–15. REPAIR OF A BROKEN WIRE WITH IN-LINE BUTT SPLICE

A. Connector Check Before Repair

NOTE: Before repairing or replacing wiring harness, sensor, solenoid, switch, or TCM as indicated for a diagnosed problem, follow the procedure below:

1. Disconnect the connector or connectors associated with the problem and inspect for:
 - Bent terminals
 - Broken terminals
 - Dirty terminals
 - Pushed back terminals
 - Missing terminals
 - Condition of mating tabs
 - Condition of mating terminals

 Ensure that terminals are secure in the connector. Clean, straighten, or replace parts as required.

2. Reconnect all previous unmated connectors. Ensure connectors are fully inserted or twisted until they lock in place. Connectors with locking tabs make an audible “click” when the lock is engaged.

3. If trouble recurs after starting the vehicle, follow proper repair procedures for trouble code or complaint.

4. If trouble does not recur, or if the correct repairs and/or replacements have been made, the problem should be corrected.

B. Special Tools

- Heat Gun, J 25070 or equivalent
- Crimping Tool for Pre-insulated Crimp J 38125-8 (Figure E–16)

NOTE: Use crimping anvils “F” and “G.”

- Wire Stripper, J 35615
- Splices P/N 23046604 14–16 AWG
- Splices P/N 23046605 18–22 AWG

NOTE: Each splice must be properly crimped and then heated to shrink the covering to protect and insulate the splice. Insulation piercing splice clips should not be used.
C. **Straight Lead Repair Procedure**

1. Locate damaged wire.
2. Remove insulation 8.0 mm (0.3 inch).
3. Insert one wire into crimp barrel and crimp.
4. Insert other wire into crimp barrel and crimp.
5. Pull on connection to ensure crimping integrity.
6. Heat splice with heat gun until covering shrinks and adhesive flows from under the covering.
7. The splice is now sealed and insulated. Electrical tape should not be used and is not necessary.
Figure E–17. AFL Automotive 2-Way, 90 Degrees Solenoid Connector
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

E–16. AFL AUTOMOTIVE 2-WAY, 90 DEGREE SOLENOID CONNECTOR

A. Connector/Terminal Repairs

<table>
<thead>
<tr>
<th>Use</th>
<th>Description</th>
<th>Manufacturers P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS Solenoid Connector</td>
<td>Connector, 2-Way</td>
<td>R-61992-001</td>
</tr>
<tr>
<td></td>
<td>Cap, Connector</td>
<td>R-62189-001</td>
</tr>
<tr>
<td></td>
<td>Terminal with 0.5 m (20 inches) wire</td>
<td>R-61970-001</td>
</tr>
<tr>
<td></td>
<td>In-Line Splice Connector</td>
<td>23046605</td>
</tr>
</tbody>
</table>

Crimp tool J 38125-8
Remover tool J 38125-13
Alternate remover tool J 38125-12A

Read disassembly process/procedure thoroughly before beginning disassembly.

B. Terminal Removal

1. Separate the 2-way connector from the solenoid (Figure E–17).
2. Remove the connector cap from the connector body.
3. Make a note for reassembly purposes of which wire (number) goes into which terminal cavity in the connector body.
4. Insert the metal blade of J 38125-13 or J 38125-12A remover into the bottom of the connector where terminal blade protrudes from the connector body.
5. Apply pressure to the terminal blade. Lift selected terminal from connector body when lock tang releases.
6. Repeat Steps 4 and 5 for the remaining terminal leads.

C. Terminal Crimping

Crimping of AFL 2-way, 90 degree terminals is not permitted. Perform repairs using a pre-crimped, 90 degree terminal and wire assembly. New terminal/wire leads are serviced as follows:

1. Locate damaged wire in terminal wiring harness.
2. Identify a location to cut the damaged wire where the butt splice connector(s) will not interfere with re-assembly and re-installation of the hydraulic control module.
3. Cut wire and strip 8.0 mm (0.3 inch) of insulation from the end. Be careful not to nick or cut wire strands.
4. Insert the stripped end of the wire into the crimp barrel and crimp.
5. Cut the 90 degree terminal and wire assembly to an appropriate length that will allow the crimped wire to securely fit into the plastic channel of the internal wiring harness. Strip 8.0 mm (0.3 inch) of installation from the end of wire, being careful no to nick or cut wire strands.
6. Insert the stripped end of the wire into the other end of the crimp barrel and crimp.
7. Pull on connector to be sure crimp is tight.
8. Heat splice with heat gun until covering shrinks and adhesive flows from under the covering.
C. **Terminal Crimping (cont’d)**

9. The splice is now sealed and insulated. Electrical tape **should not be used** and is not necessary.

10. Complete terminal installation of the 2-way connector as follows:

 a. Position proper terminal into the correct location in connector body. Push terminal and wire into connector until it locks in place. Push lightly on the terminal blade to be sure the terminal is seated.

 b. After both terminals have been inserted, install connector cap onto connector body and push lightly on cap until it locks in place.

 c. Reconnect the solenoid connector to the appropriate solenoid.
<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>SCT Part #</th>
<th>MFG. P/N</th>
<th>MATER PART NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Bolt Assist</td>
<td>R-61991-001</td>
<td>Spacer, 80F</td>
<td>300243</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal, Industrial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connector Body, 80F Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retainer, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grommet, Wire Seal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-4542</td>
<td>Grommet, Retainer</td>
<td>300244</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-4550</td>
<td>Cover A, Wire Dress</td>
<td>300245</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-4551</td>
<td>Cover B, Wire Dress</td>
<td>300246</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33001-0004</td>
<td>Terminal</td>
<td>300247</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12034413</td>
<td>Plug, Cavity Seal</td>
<td>300008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCM, 80-Way, Bolt-Assist, Dir “A” 90 Degree Wire Dress</td>
<td>R-61991-001</td>
<td>Spacer, 80F</td>
<td>300243</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal, Industrial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connector Body, 80F Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retainer, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grommet, Wire Seal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-4542</td>
<td>Grommet, Retainer</td>
<td>300244</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-6206-002</td>
<td>Cover, Wire Dress, Dir A</td>
<td>300245</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-4555</td>
<td>Cover, Bottom</td>
<td>300246</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33001-0004</td>
<td>Terminal</td>
<td>300247</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12034413</td>
<td>Plug, Cavity Seal</td>
<td>300008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCM, 80-Way, Bolt-Assist, Dir “B” 90 Degree Wire Dress</td>
<td>R-61991-001</td>
<td>Spacer, 80F</td>
<td>300243</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal, Industrial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connector Body, 80F Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retainer, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grommet, Wire Seal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-4542</td>
<td>Grommet, Retainer</td>
<td>300244</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-6206-001</td>
<td>Cover, Wire Dress, Dir B</td>
<td>300245</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-4555</td>
<td>Cover, Bottom</td>
<td>300246</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33001-0004</td>
<td>Terminal</td>
<td>300247</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12034413</td>
<td>Plug, Cavity Seal</td>
<td>300008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>MATING PART NAME</th>
<th>PART #</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-001</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4555</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, Cam-Assist</td>
<td>R-62004-002</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4588</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>TCM, 80-Way, 80W, All</td>
<td>R-62004-003</td>
<td>AFL Automotive</td>
<td>1-PC/TCM</td>
<td>E-4590</td>
<td>Cover, Wire Dress</td>
</tr>
<tr>
<td>CONNECTOR & PARTS</td>
<td>MFG. P/N</td>
<td>PART NAME</td>
<td>PART NAME</td>
<td>SCT Part #</td>
<td>SCT Kit #</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Wire Cover Kit, 80W Cam “B” Dir</td>
<td>300239</td>
<td>Cover, Bottom</td>
<td>300239</td>
<td>St. Clair</td>
<td>1-PC/TCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cover, Wire Dress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal, Industrial</td>
<td>300278</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connector Body, 20F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retainer, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grommet, Wire Seal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300253</td>
<td>E-4566</td>
<td>Grommet, Retainer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-4569</td>
<td>Cover, Wire Dress</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-4570</td>
<td>Clip, Convolute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS, 20F, Bolt-Assist</td>
<td>E-4564</td>
<td>Spacer, 20F</td>
<td></td>
<td>St. Clair</td>
<td>1-PC/TCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolt Kit, TRANS, 20W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolt</td>
<td>300241</td>
<td>St. Clair</td>
<td>1-PC/TCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retainer, Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire Cover Kit, 20W</td>
<td>300242</td>
<td>Cover, Wire Dress</td>
<td></td>
<td>St. Clair</td>
<td>1-PC/TCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clip, Convolute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE, NO, NT</td>
<td>15490464</td>
<td>Connector Assy, GT150, Half Shroud</td>
<td>300260</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15496486</td>
<td>CPA Lock, Beige/Natural</td>
<td>300261</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15326267</td>
<td>Terminal, F GT150</td>
<td>300262</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15305351</td>
<td>Seal Assy, Cable 1-Way, Yellow</td>
<td>300263</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15358890</td>
<td>Convolute Capture/TPA Lock, Black</td>
<td>300264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS</td>
<td>12015793</td>
<td>Connector, 3-Way</td>
<td>300227</td>
<td>Delphi</td>
<td>1-PC/COMP</td>
</tr>
<tr>
<td></td>
<td>12089040</td>
<td>Terminal, Pin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12089444</td>
<td>Seal- Wire Type, Silicone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN Shift Sel, 90-Degree</td>
<td>12191065</td>
<td>Connector, 16F</td>
<td>300255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12191066</td>
<td>Seal, 16-Way Connector, Orange</td>
<td>300266</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12191067</td>
<td>TPA Retainer, 16F</td>
<td>300257</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12191068</td>
<td>Strain Relief, 16F 90-Degree</td>
<td>300258</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12084912</td>
<td>Terminal, 0.8mm Wire</td>
<td>300087</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12129557</td>
<td>Cavity Plug</td>
<td>300105</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12177289</td>
<td>CPA Lock M/P, Red</td>
<td>300114</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E–66

Cable Seal, 14F Gray

Lock, Secondary 20F Green

15304882

Copyright © 2005 General Motors Corp.

RMR

RFT

J1939

DTC, 9-Pin

Strip SS

12160494

12015795
12089040
12089444

15358890

15326267
15496486
15305351

12084912
12129557
12176394
HD10-9-1939P
0460-202-1631
0460-247-1631
114017
HD18
HDC16-6
0462-201-1631
0462-221-1631
23-000-13
DT06-3S-EP11
W3S-P012
13513314

Terminal, Socket 100W
Cavity Plug, 100W
Conduit Clip, 13mm Black
Connector, Rec., 9-Way
Contact, Pin
Contact, Pin Extended
Sealing Plug
Strain Relief
Cap, Connector
Contact, Socket #16
Contact, Extended Socket
Cable, J1939 Data Bus
Connector, Plug, 3-Way
Wedgelock, Plug (Green)
Connector Assy, 2F GT150
Half Shroud
Terminal, F GT150
CPA Lock, Beige/Natural
Seal Assy, Cable 1-Way
Yellow
Convolute Capture/TPA
Lock, Black
Connector, 3-Way
Terminal, Pin
Seal, Wire Type, Silicone

PART NAME
Connector, 16F
Seal, 16-Way Connector,
Orange
TPA Retainer, 16F
Strain Relief, 16F 180-Degree
Terminal, 0.8mm Wire
Cavity Plug
CPA Lock M/P, Red
Conn 20F Mic/P 100W Gray

MFG. P/N
12191065
12191066

CAN Shift Sel, 12191067
180-Degree
15460298
12084912
12129557
12177289
12160280

CONNECTOR

300264

300262
300261
300263

300206
300275

300267
300007
300273
300000
300269
300268
300005
300035

300257
300259
300087
300105
300114

SCT
Part #
300255
300256

300283

300217

300280

SCT
Kit #

Delphi

Delphi

Deutsch IPD

Deutsch IPD

Delphi

Delphi

Delphi

MANUFACTURER

12110693

12160542

MATING
P/N

29542490

29511369

12015092
1-PC/COMP 12089188
12089444

1-PC/COMP

1-PC/COMP

1-PC/COMP

12060551
12129557
12176394

1-PC/COMP 12191176

1-PC/COMP

CONFIG

Contact, Pin #18
Contact, Pin Extended

Diagnostic Tool

Conn 20M Mic/P 100W
Gray
Cable Assist/Seal, 20M
Green
Lock Assist/Seal, 20M
Green
Terminal, Pin 100W
Cavity Plug, 100W
Conduit Clip, 13mm Black

CAN Shift Selector

MATING PART NAME

12015092
12089188
12089444

Connector, Shroud 3-Way
Terminal, Socket
Seal, Wire Type, Silicone

DT04-3P-EE01 Connector, Rec., 3-Way
W3P
Wedgelock, Receptacle
R-62184-001-A
Retarder Solenoid

0460-202-1631
0460-247-1631

12060551
12129557
12176394

12191176

12110693

12160542

MFG. P/N

3000 AND 4000 PRODUCT FAMILIES TROUBLESHOOTING MANUAL—ALLISON 4th GENERATION CONTROLS

APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART
NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS


19134000
12092125
R-61992-001
R-62189-001

12124075

12124075
15326143

12015092
12089188
12089444
12162852

MFG. P/N

Copyright © 2005 General Motors Corp.

VIM, 18-Way

TEMP

OILT

NT1

OLS

PS1

SS2 Sol,
7-Speed

SS1 Sol

29541590
12124639
29541590
12124639
12110139
12066337
12064758
12047767
12047783
15490953
12110236
12129691
12047662
12047664
12047767
12040920
12040936
12110545
12129426
12034236
12103881
12034413

Connector
Assembly, 2M, 29544184
90 Sol Kit

PCS Sol

STANDOFF

RTDR Air Sol

RTEMP

RMRX

CONNECTOR

Seal, Interfacial
O-ring Seal
Connector, 2F
Cap, Connector
Connector, 2F
Cap, Connector
Terminal with 0.5 meter wire
In-line Splice connection
Connector, 2W Solenoid
Terminal, 280 Series Socket
Connector, 2W Solenoid
Terminal, 280 Series Socket
Connector, 2-Way, PS1
Terminal, 280 Series Pin
3-Pin Plug
Terminal, Socket
Secondary Lock, TPA
Connector, 2-Way
Terminal, 150F
Sump Temp Sensor
Connector, 2-Way
Lock, Secondary 20F Green
Terminal, Socket
Connector Body, 18-Way
Seal, 15-Way
Strain Relief,308-Way
Bolt, 7mm Head Ext.
Retainer Clip, Bolt
Terminal, 150F
Cavity Plug, Metri-pack

Connector, Shroud 3-Way
Terminal, Socket
Seal, Wire Type, Silicone
Connector, 2F M/P 150.2,
Black
Terminal, F M/P 150.2
Connector Assy, 2F M/P
150.2, Black
Terminal, F GT160

PART NAME

SCT
Part #

SCT
Kit #

Delphi

Delphi

Phillips

Delphi

Delphi

Delphi

Delphi

Delphi

Allison Transmission
PDC

AFL Automotive

AFL Automotive
Minnesota
Parker Seal

Delphi

Delphi

Delphi

MANUFACTURER

1-PC/COMP

Internal

1-PC/COMP

1-PC/COMP

Resist Mod

CONFIG

12084669

12015795
12089040
12089444
12015792

MATING
P/N
MFG. P/N
12015795
12089040
12089444
12015792

MATING PART NAME

VIM Header Assy

Sensor, Temperature, Sump

Sump Temp Connector

Turbine Speed Sensor
(3000)

OiL Level Sensor

Pressure Switch PS1

Solenoid SS2, 7-Speed

Solenoid SS1

PCS Solenoid

PCS Solenoid

Control Module

Accumulator Solenoid

Retarder Temp Sensor

Connector, 3-Way
Terminal, Pin
Seal, Wire Type, Silicone

3000 AND 4000 PRODUCT FAMILIES TROUBLESHOOTING MANUAL—ALLISON 4th GENERATION CONTROLS

APPENDIX E—CONNECTOR PART NUMBERS, TERMINAL PART
NUMBERS, TOOL PART NUMBERS, AND REPAIR INSTRUCTIONS

E–67


<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>MFG. P/N</th>
<th>PART NAME</th>
<th>SCT Part #</th>
<th>SCT Kit #</th>
<th>MANUFACTURER</th>
<th>CONFIG</th>
<th>MATING P/N</th>
<th>MFG. P/N</th>
<th>MATING PART NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIM, 30-Way</td>
<td>12034397</td>
<td>Connector Body, 30-Way</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12040879</td>
<td>Seal, 9-Way</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12110546</td>
<td>Strain Relief, 18-Way</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12129426</td>
<td>Bolt, 7mm Head Ext.</td>
<td></td>
<td></td>
<td>Delphi</td>
<td>1-PCCOMP</td>
<td></td>
<td></td>
<td>VIM Header Assy</td>
</tr>
<tr>
<td></td>
<td>12034236</td>
<td>Retainer Clip, Bolt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12103881</td>
<td>Terminal, 150F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12034413</td>
<td>Cavity Plug, Metri-Pack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XFER</td>
<td>KPSE06E10-6S</td>
<td>Connector Assy, Metri-Pack</td>
<td></td>
<td></td>
<td>ITT Cannon</td>
<td>1-PCCOMP</td>
<td></td>
<td></td>
<td>Transfer Case</td>
</tr>
</tbody>
</table>
APPENDIX F—THROTTLE POSITION SENSOR ADJUSTMENT

A. Description of Operation (Figure F–1)

1. To properly communicate throttle position to the Transmission Control Module (TCM), the throttle position sensor must convert its mechanical movement to an electrical form the TCM can understand. To accomplish this, contacts move across a resistive strip inside the sensor which translates position into voltage (Figure F–1).

![Figure F–1. Throttle Position to Voltage Conversion](image)

2. Each position gives a different voltage. The TCM then converts this voltage into percent. Each millimeter of travel converts to approximately 0.110 volts. Figure F–2 diagrams the voltage and throttle movement relationship.

![Figure F–2. Throttle Position Determination Diagram](image)

3. Throttle percent is proportional to the amount of travel of the throttle position sensor (Table F–1). Therefore a small amount of travel corresponds to a low throttle percentage and a large amount of travel corresponds to a high throttle percentage (Table F–1).

4. The throttle position sensor (TPS) is self-calibrating within its normal range of operation. Each time the vehicle is started and the TCM is initialized, the idle position that is stored for closed throttle is increased from its previous lowest reading. Also, the wide open throttle position is reduced from its previous highest reading. Once the new position is read from the TPS, the idle and wide open...
APPENDIX F—THROTTLE POSITION SENSOR ADJUSTMENT

throttle set points are continuously readjusted to the lowest and highest points, respectively. This compensates for fuel control system wear or previous mechanical adjustment. One area of particular concern is when the throttle sensor extends into the error zone. This indicates a TPS misadjustment to the TCM, and 100 percent throttle is assumed until readjustment is performed. Simply clearing the DTC will not resolve the situation; use the Allison DOC™ For PC–Service Tool to reset the TPS calibrations after a TPS adjustment.

B. Throttle Position Sensor (TPS) Adjustment

When properly installed by the equipment manufacturer (Figure F-3), the TPS should not require adjustment. Confirm that the throttle sensor is installed to manufacturer specifications before adjusting the throttle position sensor. The idle position should be approximately 8.9 mm or 0.97 volts or higher, and full throttle position should be approximately 35.7 mm or 3.889 volts or lower. The TPS is self-calibrating, meaning there is no optimum closed position or wide open position. As long as the travel is within the 8.5–35.7 mm range the TPS is set properly. A total stroke of 15.2–22.9 mm must be maintained. Watch the movement of the throttle sensor as the controls move it through its full stroke. Be sure there is no misalignment or obstruction to smooth movement through the full stroke. Make certain the idle and full throttle positions are not in the error zones (Figure F–2). The error zones occur when the idle position is less than 2.5 mm, or when the full throttle position is more than 40.6 mm. When idle or wide open throttle positions are in the error zones, the TCM will log a code. When a TPS code is logged, the TCM assumes a default throttle setting which will negatively affect shift quality.

NOTE: Use Test Harness J 41339 for measuring voltages.

Table F–1.

<table>
<thead>
<tr>
<th>mm</th>
<th>Volts</th>
<th>mm</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>24</td>
<td>2.634</td>
</tr>
<tr>
<td>1</td>
<td>0.110</td>
<td>25</td>
<td>2.744</td>
</tr>
<tr>
<td>2</td>
<td>0.220</td>
<td>26</td>
<td>2.854</td>
</tr>
<tr>
<td>3</td>
<td>0.329</td>
<td>27</td>
<td>2.964</td>
</tr>
<tr>
<td>4</td>
<td>0.439</td>
<td>28</td>
<td>3.073</td>
</tr>
<tr>
<td>5</td>
<td>0.549</td>
<td>29</td>
<td>3.183</td>
</tr>
<tr>
<td>6</td>
<td>0.659</td>
<td>30</td>
<td>3.293</td>
</tr>
<tr>
<td>7</td>
<td>0.768</td>
<td>31</td>
<td>3.403</td>
</tr>
<tr>
<td>8</td>
<td>0.878</td>
<td>32</td>
<td>3.512</td>
</tr>
<tr>
<td>9</td>
<td>0.988</td>
<td>33</td>
<td>3.622</td>
</tr>
<tr>
<td>10</td>
<td>1.098</td>
<td>34</td>
<td>3.732</td>
</tr>
<tr>
<td>11</td>
<td>1.207</td>
<td>35</td>
<td>3.842</td>
</tr>
<tr>
<td>12</td>
<td>1.317</td>
<td>36</td>
<td>3.951</td>
</tr>
<tr>
<td>13</td>
<td>1.427</td>
<td>37</td>
<td>4.061</td>
</tr>
<tr>
<td>14</td>
<td>1.537</td>
<td>38</td>
<td>4.171</td>
</tr>
<tr>
<td>15</td>
<td>1.646</td>
<td>39</td>
<td>4.281</td>
</tr>
<tr>
<td>16</td>
<td>1.756</td>
<td>40</td>
<td>4.390</td>
</tr>
<tr>
<td>17</td>
<td>1.866</td>
<td>41</td>
<td>4.500</td>
</tr>
<tr>
<td>18</td>
<td>1.976</td>
<td>42</td>
<td>4.610</td>
</tr>
<tr>
<td>19</td>
<td>2.085</td>
<td>43</td>
<td>4.720</td>
</tr>
<tr>
<td>20</td>
<td>2.195</td>
<td>44</td>
<td>4.829</td>
</tr>
<tr>
<td>21</td>
<td>2.305</td>
<td>45</td>
<td>4.939</td>
</tr>
<tr>
<td>22</td>
<td>2.415</td>
<td>46</td>
<td>5.049</td>
</tr>
<tr>
<td>23</td>
<td>2.524</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure F–3. Throttle Position Sensor Adjustment
APPENDIX F—THROTTLE POSITION SENSOR ADJUSTMENT

Allison Transmission only supplies the detail parts of these assemblies for both service requirements and support equipment requirements to OEMs and DOEMs. Here is the list of detail parts that are attached to the detail throttle position sensor to achieve the different configurations.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
<th>Part Number</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis-mounted with Slip-Link</td>
<td>Throttle Position Sensor x length</td>
<td>Various</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Slip-Link</td>
<td>29503631</td>
<td>1</td>
</tr>
<tr>
<td>Engine-mounted with Slip-Link</td>
<td>Throttle Position Sensor x length</td>
<td>Various</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Slip-Link</td>
<td>29503631</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Engine Bracket</td>
<td>29500824</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Grommet</td>
<td>29509441</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ferrule</td>
<td>29509442</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0.250-20 x 2.250 long; bolt with nylon patch</td>
<td>25944294</td>
<td>3</td>
</tr>
<tr>
<td>Transmission-mounted (right or left) with Slip-Link</td>
<td>Throttle Position Sensor x length</td>
<td>Various</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Slip-Link</td>
<td>29503631</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Engine Bracket</td>
<td>29508371</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Grommet</td>
<td>29509441</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ferrule</td>
<td>29509442</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0.250-20 x 2.250 long; bolt with nylon patch</td>
<td>2954494</td>
<td>3</td>
</tr>
</tbody>
</table>

The bolt for attaching the throttle sensor to the ferrules in engine and transmission brackets is torqued to 8–11 N·m (72–98 inch lbs).
G–1. WELDING ON VEHICLE

When frame or other welding is required on the vehicle, take the following precautions to protect the electronic control components:

1. Disconnect the wiring harness connectors at the transmission electronic control unit.
2. Disconnect the positive and negative battery connections, and any electronic control ground wires connected to the frame or chassis.
3. Cover electronic control components and wiring to protect them from hot sparks, etc.
4. Do not connect welding cables to electronic control components.

WARNING!

Do not jump start a vehicle with arc welding equipment. Arc welding equipment’s dangerously high currents and voltages cannot be reduced to safe levels.

G–2. VEHICLE INTERFACE MODULE

The Allison Vehicle Interface Module (VIM) containing all Allison system relays and fuses must be used as the interface to all vehicle wiring. Refer to Figure G–2 for VIM component location and pin-out. To close an open VIM, tighten the bolts in the numerical order shown in Figure G–1 to provide a sealed, water-tight box. Torque the bolts to 5–8 N·m (4–6 lb ft).

![Figure G–1. Vehicle Interface Module (VIM)](image-url)
Figure G–2. VIM Components Location and Pin-Out Diagram

Ignition fuse must be in place and not open for there to be continuity between pins C1/30 and S1/18
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H–1</td>
<td>3000 and 4000 Product Families—Neutral</td>
<td>H–3/H–4</td>
</tr>
<tr>
<td>H–2</td>
<td>3000 and 4000 Product Families—Reverse</td>
<td>H–5/H–6</td>
</tr>
<tr>
<td>H–3</td>
<td>3000 Product Family—7-Speed, Low Range</td>
<td>H–7/H–8</td>
</tr>
<tr>
<td>H–4</td>
<td>4000 Product Family—7-Speed, Low Range</td>
<td>H–9/H–10</td>
</tr>
<tr>
<td>H–5</td>
<td>3000 and 4000 Product Families—First Range</td>
<td>H–11/H–12</td>
</tr>
<tr>
<td>H–6</td>
<td>3000 and 4000 Product Families—Second Range</td>
<td>H–13/H–14</td>
</tr>
<tr>
<td>H–7</td>
<td>3000 and 4000 Product Families—Third Range</td>
<td>H–15/H–16</td>
</tr>
<tr>
<td>H–8</td>
<td>3000 and 4000 Product Families—Fourth Range</td>
<td>H–17/H–18</td>
</tr>
<tr>
<td>H–9</td>
<td>3000 and 4000 Product Families—Fifth Range</td>
<td>H–19/H–20</td>
</tr>
<tr>
<td>H–10</td>
<td>3000 and 4000 Product Families—Sixth Range</td>
<td>H–21/H–22</td>
</tr>
<tr>
<td>H–12</td>
<td>3000 Product Family—Retarder ON</td>
<td>H–25/H–26</td>
</tr>
<tr>
<td>H–14</td>
<td>4000 Product Family—Retarder ON</td>
<td>H–29/H–30</td>
</tr>
</tbody>
</table>
Figure H-2. 3000 and 4000 Product Families Hydraulic Schematic—Reverse

NOTES:
- TCC Solenoid is generally ON from 2nd-range thru 6th-range
- Main Mod Solenoid may be ON in Reverse, Neutral, Low (7-speed)
- PS1 = Diagnostic Pressure Switch
 1st or 2nd as determined by calibration

LEGEND:
- MAIN EXHAUST SUCTION MAIN MOD
- COOLER/LUBE EX. BACKFILL CONVERTER
- LUBE FILTER MAIN REGULATOR
- LUBE FILTER LUBE REGULATOR
- HEAT SPLITLINE
- MAIN MOD
- 5-Speed Only
- C1 C2 C3 C4 C5 C6
- PCS1 PCS2 PCS3 PCS4 PCS5 PCS6
- SS1 SS2
- Accumulator
- Orifice
- Accumulator
- Accumulator
- SS1 SS2

Copyright © 2005 General Motors Corp.
Figure H–3. 3000 Product Family Hydraulic Schematic—7-Speed, Low Range
Figure H–7. 3000 and 4000 Product Families Hydraulic Schematic—Third Range

NOTES:

- TCC Solenoid is generally ON from 2nd-range thru 8th range
- Main Mod Solenoid may be ON in Reverse, Neutral, Low (7-speed), 1st, or 2nd as determined by calibration.
- PS1 = Diagnostic Pressure Switch
- 7-Speed Transmissions only

LEGEND:

- LOCKUP
- COOLER
- LUBE FILTER
- MAIN FILTER
- REAR SPLITLINE
- PRESSURE SENSOR
- MAIN
- MAIN MOD
- MAIN REGULATOR
- LUBE
- DIAGNOSTIC
- EXHAUST
- BACKFILL
- COOLER/LUBE
- LOCKUP
- Converter
- Accumulator
- Orifice
- Filter
- Oil Supply
- Oil Return
- Oil Pressure

Copyright © 2005 General Motors Corp.
Figure H–10. 3000 and 4000 Product Families Hydraulic Schematic—Sixth Range

Notes:
- TCC Solenoid is generally ON from 2nd-range thru 6th-range
- Main Mod. Solenoid may be ON in Reverse, Neutral, Low (7-speed), 1st or 2nd as determined by calibration
- PS1 = Diagnostic Pressure Switch
- 7-Speed Transmissions only

LEGEND:
- MAIN
- CONTROL
- MAIN MOD
- SS
- N/C
- N/O
- PCS
- SS2
- PS1
- LOCKUP
- COOLER
- FILTER
- SUCTION FILTER
- PUMP
- FILTER
- SUMP
- ACCUMULATOR
- Orifice
- PCMS

Copyright © 2005 General Motors Corp.
Figure H–11. 3000 Product Family Hydraulic Schematic—Retarder OFF

Copyright © 2005 General Motors Corp.
Figure H–12. 3000 Product Family Hydraulic Schematic—Retarder ON

Copyright © 2005 General Motors Corp.
Figure H–13. 4000 Product Family Hydraulic Schematic—Retarder OFF

Copyright © 2005 General Motors Corp.
Figure H–14. 4000 Product Family Hydraulic Schematic—Retarder ON

Copyright © 2005 General Motors Corp.
NOTE:
TERMINAL L ON THE STRIP SHIFT SELECTOR INSTEAD OF OUTPUT RELAY SWITCHED POWER
DIAGNOSTIC TOOL/INTERFACE ISO 9141
TRANSMISSION CONTROL 12V OR 24V MODULE (TCM)
OUTPUT 3
OUTPUT 6
OUTPUT 4
NEUTRAL START SWITCHED POWER FROM VEHICLE
15A 10A
ENGINE INTERFACE
3000 AND 4000 PRODUCT FAMILIES TROUBLESHOOTING MANUAL—ALLISON 4TH GENERATION CONTROLS
APPENDIX J—3000 AND 4000 PRODUCT FAMILIES WIRING SCHEMATICS

Figure J–1. 3000 and 4000 Product Families Connector Diagram—TCM

Copyright © 2005 General Motors Corp.
The following graphs show the coil resistance characteristics of Allison 4th Generation Controls solenoids.

Figure K–1. 3000 and 4000 Product Families Variable Bleed Solenoids—Main Mod, TCC, And PCS1 through PCS6
Figure K–2. 3000 and 4000 Product Families ON/OFF Solenoids—SS1 And SS2 (C6 Enable) in 7-Speed Models

Figure K–3. 3000 and 4000 Product Families Retarder Accumulator Air Solenoid—SS2 in Retarder-Equipped Transmissions
L–1. ELECTROMAGNETIC/RADIO FREQUENCY INTERFERENCE

Be sure that the TCM for the Allison Transmission Electronic Controls is properly grounded to prevent EMI interference problems. The chassis frame must be connected to the negative post of the vehicle battery. A proper connection to the chassis frame is required. The connection must be free from rust and paint. The electrical integrity of this connection must not deteriorate with the age of the vehicle. If the TCM is cab-mounted, there must be two 1½ to 2 inch braided grounding straps connecting the cab structure to the chassis frame.

All electrical and electronic systems generate electromagnetic fields that can interfere with other electronic systems. Allison Transmission electronic transmission controls comply with Federal Communications Commission (FCC) regulations and other guidelines concerning emitted radio frequency interference for transportation electronics. The position of Allison Transmission is that manufacturers and installers of EMI/RFI emitting equipment are responsible for adhering to FCC regulations and other guidelines concerning emitted radio frequency interference for transportation electronics.

Some radio-telephone or two-way communication radios (land-mobile radio), or the manner in which they are installed, can adversely affect vehicle operation or be affected by other vehicle components. Expenses incurred to protect vehicle-related systems from EMI/RFI emissions by radio-telephone or two-way communications radios (land-mobile radio) or to integrate such devices into vehicles are not the responsibility of Allison Transmission.

L–2. GENERAL GUIDELINES FOR RADIO EQUIPMENT INSTALLATION

The following general guidelines for installing radio-telephone or two-way communications radios (land-mobile radio) in a vehicle supplement, but DO NOT replace, detailed instructions provided by the radio equipment manufacturer. Detailed installation instructions are the sole responsibility of the radio equipment manufacturer.

Experience has shown that most EMI/RFI problems can be prevented or eliminated by following the guidelines. If EMI/RFI problems persist after following the guidelines and after ensuring the installation conforms to the guidelines, contact the vehicle and radio equipment manufacturers for additional installation or equipment operation instructions.

A. Transmitter Installation

1. Locate remote radio transmitters as far away from other electronic devices and as near to the side of the vehicle body as possible.

2. Mount transceivers (transmitter and receiver in one box) under the dash so as not to interfere with vehicle controls or passenger movement.

B. Antenna Installation

Each vehicle and body style react differently to radio frequency energy. When dealing with an unfamiliar vehicle, test various antenna locations by using a magnetic mount antenna and checking for adverse effects. Antenna location is a major factor in EMI/RFI problems.

C. Antenna Cable Routing

1. Use high quality, 95 percent shield coverage, coaxial (coax) cable. Route the coax well away from any electronic components.

2. Route antenna cables as far away from vehicle wiring as possible to reduce the likelihood of the vehicle wiring acting as an antenna for interference.
APPENDIX L—EXTERNALLY-GENERATED ELECTRONIC INTERFERENCE

D. Radio Wiring and Connector Location
 1. Connect transmitter power leads directly to the battery.

 2. For transceivers (transmitter and receiver in one box) with ignition control, place a 12V power
 contactor at the vehicle battery. Drive the contactor coil, through an appropriate in-line fuse, from
 an ignition circuit not powered during engine cranking.

 3. Any negative lead from a handset or control unit must return to battery negative.

 4. Connect the positive lead from a handset or control unit directly to battery.

 5. Fuse handset or control unit positive and negative leads separately from the transceiver negative
 and positive leads. Use correctly rated fuses.

E. Power and Ground Wire Routing
 Route radio power and ground wires as far away as possible from electronic control modules.

F. Troubleshooting
 The following are common causes of EMI/RFI problems:
 • Power leads connected to points other than the battery
 • Improper antenna location
 • Poor shielding or connections to antenna cable
 • Transmitter or transceiver wiring too close to vehicle electronics

L–3. EXTERNALLY-GENERATED SPEED SENSOR SIGNALS

A. Testing for Externally-Generated Speed Sensor Signals
 Use the following procedures to determine if speed sensor signals generated by a source external to
 the transmission or wiring harness are present:

 1. Turn ignition ON.

 2. Keep engine OFF.

 3. If the TCM is ON (shift selector display remains illuminated), connect the Allison DOC™ For
 PC–Service Tool.

 NOTE: If false speed signals were present at the previous shutdown, the TCM might still be “on” even though
 the ignition is “off.” The Allison DOC™ For PC–Service Tool is powered by ignition power so the
 ignition must be “on” to use the Allison DOC™ For PC–Service Tool to read the speed signals.

 4. Read speed sensor signals.

 5. If a speed sensor signal is other than one (1), then there is a short to another circuit that is carrying
 an AC or PWM signal.

 6. Measure the resistance of the sensor.

 7. Test for shorts to other circuits within the harness or transmission connector.

 8. Inspect to be sure there is no conductive material inside the connector.
9. Inspect to be sure speed sensor circuit wires are a twisted pair.

10. Test to be sure a properly grounded drain wire.

11. Test for the presence of a strong external AC signal.

12. Repair or replace parts as required.
NOTE: Fifth range not attainable if TCM is programmed for ranges 1–4 only.

Solenoids PCS1 and PCS2 are normally open solenoids. These solenoids are hydraulically ON when electrically de-energized.
Figure M–2. Diagnostic Tree—3000 and 4000 Product Families Hydraulic System Without Pressure Gauges

NOTE: Fifth range not attainable if TCM is programmed for ranges 1–4 only.

**Solenoids PCS1 and PCS2 are normally open solenoids. These solenoids are hydraulically ON when electrically de-energized.

PS1 OFF: Pressure Switch is EXHAUSTED.
PS1 ON: Pressure Switch is PRESSURIZED.
NOTE: Refer to the Allison DOC™ For PC–Service Tool User Guide, GN3433EN, for complete information.
NOTES

APPENDIX N—ALLISON DOC™ FOR PC—SERVICE TOOL
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

The schematics which follow were taken from the Sales Tech Data Book entitled Allison 4th Generation Controls. These schematics provide detail information needed to correctly perform input and output function connections. For an overview of Input/Output Functions, refer to Section 7 of this manual.

INPUT FUNCTION A. SECONDARY SHIFT SCHEDULE

USES: Provides operator selection of dual shift schedules. Can be used for performance/economy, loaded/empty, or other shift schedule combinations.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

This function can be provided by a J1939 message.
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION B. D1 SELECTION

USES: Provides a convenient means of attaining 1st range hold for pushbutton shift selectors. Range to select is programmable for Primary and Secondary modes.

VARIABLES TO SPECIFY: Primary Mode selected range, Secondary Mode selected range (usually 1st range). Can be used only on the MODE button.

VOCATIONS: Various

Figure P–2. D1 Selection
INPUT FUNCTION C. PTO ENABLE—SWITCHED TO POWER (WIRE 143)

USES: Permits PTO to be engaged only when engine speed and output speed are in allowable range and throttle is low. Also disengages PTO if speeds are exceeded.

VARIABLES TO SPECIFY: Minimum and maximum engine speed for engagement, maximum engine speed for allowable operation, minimum and maximum output speed for engagement, maximum output speed for allowable operation.

VOCATIONS: Various (with usage of PTO)

WARNING!: These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could cause unscheduled operation of the PTO or other unpredictable operation resulting in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

Figure P–3. PTO Enable—Switched to Power (Wire 143)
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could cause unscheduled operation of the PTO or other unpredictable operation resulting in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION C. PTO ENABLE—SWITCHED TO GROUND (WIRE 142)

USES: Permits PTO to be engaged only when engine speed and output speed are in allowable range and throttle is low. Also disengages PTO if speeds are exceeded.

VARIABLES TO SPECIFY: Minimum and maximum engine speed for engagement, maximum engine speed for allowable operation, minimum and maximum output speed for engagement, maximum output speed for allowable operation.

VOCATIONS: Various (with usage of PTO)

Figure P–4. PTO Enable—Switched to Ground (Wire 142)
APPENDIX P—INPUT/OUTPUT FUNCTIONS

INPUT FUNCTION C. PTO ENABLE—USING MODE BUTTON

USES: Permits PTO to be engaged only when engine speed and output speed are in allowable range and throttle is low. Also disengages PTO if speeds are exceeded.

VARIABLES TO SPECIFY: Minimum and maximum engine speed for engagement, maximum engine speed for allowable operation, minimum and maximum output speed for engagement, maximum output speed for allowable operation.

VOCATIONS: Various (with usage of PTO)

Figure P–5. PTO Enable—Using MODE Button

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could cause unscheduled operation of the PTO or other unpredictable operation resulting in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION D. SHIFT SELECTOR TRANSITION

USES: When two shift selectors are used, to select which one is active.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

WARNING!
If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

Figure P–6. Shift Selector Transition
APPENDIX P—INPUT/OUTPUT FUNCTIONS

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could cause unintended selection of range or other unpredictable operation resulting in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION E. SINGLE INPUT AUXILIARY FUNCTION RANGE INHIBIT

USES: Prevents inadvertent range selection when auxiliary equipment is operating or prevents engagement of the transmission unless brake pedal is depressed.

VARIABLES TO SPECIFY: None

VOCATIONS: Transit bus, school bus—auxiliary equipment input; various (brake pedal input)

WARNING! If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

NOTE: TCMs with this function activated must have wire 101 permanently connected to wire 103 if the function is not being used.

Figure P–7. Single Input Auxiliary Function Range Inhibit

This function can be provided by a J1939 message.
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could cause unintended selection of range or other unpredictable operation resulting in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION F. DUAL INPUT AUXILIARY FUNCTION RANGE INHIBIT

USES: Prevents inadvertent range selection when auxiliary equipment is operating. Used in emergency equipment to prevent inadvertent range selection from NEUTRAL.

VARIABLES TO SPECIFY: None

VOCATIONS: Emergency equipment

Figure P–8. Dual Input Auxiliary Function Range Inhibit
INPUT FUNCTION G. AUXILIARY HOLD

USES: Provide a discrete input to hold the transmission in present range.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

NOTE: Transmission will continue to operate with normal downshift schedule when function is active.

Figure P–9. Auxiliary Hold
INPUT FUNCTION H. ENGINE BRAKE ENABLE AND PRESELECT REQUEST PLUS ENGINE BRAKE ENABLE OUTPUT USING EXHAUST BRAKES

USES: Used with engine brakes to signal the TCM that the brake is active and to provide increased braking by preselecting a lower range. Also prevents engagement of engine brake with throttle > 0 or lockup OFF.

VARIABLES TO SPECIFY: Preselect range. Standard value is second range.

VOCATIONS: Various

Figure P–10. Engine Brake Enable And Preselect Request Plus Engine Brake Enable Output Using Exhaust Brakes

This function can be provided by a J1939 message.
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION H. ENGINE BRAKE ENABLE AND PRESELECT REQUEST PLUS ENGINE BRAKE ENABLE OUTPUT USING ECM CONTROLLED EXHAUST BRAKES

USES: Used with exhaust brakes controlled by electronic engines to signal the TCM that the brake is active and to provide increased braking by preselecting a lower range. Also prevents engagement of engine brake with throttle > 0 or lockup OFF.

VARIABLES TO SPECIFY: Preselect range. Standard value is second range.

VOCATIONS: Various

Figure P–11. Engine Brake Enable And Preselect Request Plus Engine Brake Enable Output Using ECM Controlled Exhaust Brakes

This function can be provided by a J1939 message.
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION H. ENGINE BRAKE ENABLE AND PRESELECT REQUEST PLUS ENGINE BRAKE ENABLE OUTPUT WITH SINGLE LEVEL COMPRESSION BRAKES

USES: Used with engine brakes to signal the TCM that the brake is active and to provide increased braking by preselecting a lower range. Also prevents engagement of engine brake with throttle > 0 or lockup OFF.

VARIABLES TO SPECIFY: Preselect range. Standard value is fourth range.

VOCATIONS: Various

Figure P–12. Engine Brake Enable And Preselect Request Plus Engine Brake Enable Output With Single Level Compression Brakes
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION H. ENGINE BRAKE ENABLE AND PRESELECT REQUEST PLUS ENGINE BRAKE ENABLE OUTPUT WITH MULTI-LEVEL COMPRESSION BRAKES

USES: Used with multiple-level compression brakes to signal the TCM that the brake is active and to provide increased braking by preselecting a lower range. Also prevents engagement of engine brake with throttle > 0 or lockup OFF.

VARIABLES TO SPECIFY: Preselect range. Standard value is fourth range.

VOCATIONS: Various

Figure P–13. Engine Brake Enable and Preselect Request Plus Engine Brake Enable Output With Multi-Level Compression Brakes
INPUT FUNCTION I. EUROPEAN ENGINE BRAKE ENABLE AND PRESELECT REQUEST PLUS ENGINE BRAKE ENABLE OUTPUT USING EXHAUST BRAKES

Used with engine brakes to provide a signal to the TCM that the brake is active and to provide increased braking by preselecting a lower range. Also prevents engagement of engine brake with throttle > 0 or lockup OFF.

VARIABLES TO SPECIFY: Preselect range. Standard value is second range.

VOCATIONS: Various
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION I. EUROPEAN ENGINE BRAKE ENABLE AND PRESELECT REQUEST PLUS ENGINE BRAKE ENABLE OUTPUT WITH SINGLE LEVEL COMPRESSION BRAKES

USES: Used with engine brakes to provide a signal to the TCM that the brake is active and to provide increased braking by preselecting a lower range. Also prevents engagement of engine brake with throttle > 0 or lockup off.

VARIABLES TO SPECIFY: Preselect range. Standard value is fourth range.

VOCATIONS: Various

Figure P–15. European Engine Brake Enable and Preselect Request Plus Engine Brake Enable Output With Single Level Compression Brakes
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION J. FIRE TRUCK PUMP MODE—OPERATOR AND PUMP ACTIVATED (NORTH AMERICA)

USES: Facilitates engagement of split shaft PTO and shifts transmission to fourth range lockup.

VARIABLES TO SPECIFY: None

VOCATIONS: Fire Truck Pumpers

WARNING! If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

SYSTEM OPERATION

OPERATOR ACTION—System Response

TO ENGAGE:

1. SELECT NEUTRAL—Transmission shifts to Neutral.
2. APPLY PARK BRAKE—None
3. SELECT PUMP—Turns on “Pump Mode Requested” light. Turns on input signal to TCM (wire 123) which activates “fire truck” mode. When split-shaft shifts, wire 122 is activated and “Pump Engaged” light is turned on.
4. SELECT DRIVE—Transmission shifts to fourth lockup. “OK To Pump” light is turned on.

TO DISENGAGE:

1. SELECT NEUTRAL—Transmission shifts to Neutral if output shaft speed is less than 1000 rpm.
2. SELECT ROAD MODE—PTO disengages. If output shaft rotation continues, press the Momentary Trans. Brake Switch before selecting Road Mode. This will cause the transmission output shaft to stop if transmission is in Neutral and output shaft speed is less than 175 rpm.
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION J. FIRE TRUCK PUMP MODE—OPERATOR ONLY ACTIVATED (NORTH AMERICA)

USES: Facilitates engagement of split shaft PTO and shifts transmission to fourth range lockup.

VARIABLES TO SPECIFY: None

VOCATIONS: Fire Truck Pumpers

WARNING! If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

SYSTEM OPERATION

OPERATOR ACTION—System Response

TO ENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral.
2. APPLY PARK BRAKE—None
3. SELECT PUMP—Turns on “Pump Mode Requested” light. Turns on both input signals to TCM (wires 122 and 123) which activates “fire truck” mode. When split-shaft shifts, “Pump Engaged” light is turned on.
4. SELECT DRIVE—Transmission shifts to fourth lockup. “OK To Pump” light is turned on.

TO DISENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral if output shaft speed is less than 1000 rpm.
2. SELECT ROAD MODE—PTO disengages. If output shaft rotation continues, press the Momentary Trans. Brake Switch before selecting road mode. This will cause the transmission output shaft to stop if transmission is in Neutral and output shaft speed is less than 175 rpm.

Figure P–17. Fire Truck Pump Mode—Operator Only Activated (North American)
APPENDIX P—INPUT/OUTPUT FUNCTIONS

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION J. FIRE TRUCK PUMP MODE—OPERATOR AND PUMP ACTIVATED (NON-NORTH AMERICA)

USES: Facilitates engagement of split shaft PTO and shifts transmission to fourth range lockup.

VARIABLES TO SPECIFY: None

VOCATIONS: Fire Truck Pumpers

WARNING! If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

SYSTEM OPERATION

OPERATOR ACTION—System Response

TO ENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral.
2. APPLY PARK BRAKE—None
3. SELECT PUMP—Turns on “Pump Mode Requested” light. Turns on both input signals to TCM (wire 143) which activates “fire truck” mode. When split-shaft shifts, WIRE 117 IS ACTIVE AND “Pump Engaged” light is turned on.
4. SELECT DRIVE—Transmission shifts to fourth lockup. “OK To Pump” light is turned on.

TO DISENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral if output shaft speed is less than 1000 rpm.
2. SELECT ROAD MODE—PTO disengages. If output shaft rotation continues, press the Momentary Trans. Brake Switch before selecting road mode. This will cause the transmission output shaft to stop if transmission is in Neutral and output shaft speed is less than 175 rpm.

Figure P–18. Fire Truck Pump Mode—Operator and Pump Activated
INPUT FUNCTION J. FIRE TRUCK PUMP MODE—OPERATOR ONLY ACTIVATED (NON-NORTH AMERICA)

USES: Facilitates engagement of split shaft PTO and shifts transmission to fourth range lockup.

VARIABLES TO SPECIFY: None

VOCATIONS: Fire Truck Pumpers

If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

SYSTEM OPERATION

OPERATOR ACTION—System Response

TO ENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral.
2. APPLY PARK BRAKE—None
3. SELECT PUMP—Turns on “Pump Mode Requested” light. Turns on both input signals to TCM (wires 117 and 143) which activates “fire truck” mode. When split-shaft shifts, “Pump Engaged” light is turned on.
4. SELECT DRIVE—Transmission shifts to fourth lockup. “OK To Pump” light is turned on.

TO DISENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral if output shaft speed is less than 1000 rpm.
2. SELECT ROAD MODE—PTO disengages. If output shaft rotation continues, press the Momentary Trans. Brake Switch before selecting road mode. This will cause the transmission output shaft to stop if transmission is in Neutral and output shaft speed is less than 175 rpm.
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION L. AUTOMATIC NEUTRAL—SINGLE INPUT SWITCHED TO GROUND (WIRE 117)

USES: Provides for automatic selection of NEUTRAL when PTO is operated regardless of range selected. Requires re-selecting range to shift out of NEUTRAL. Shown with range indicator output.

VARIABLES TO SPECIFY: Maximum output speed for activating this function. Range indicator = neutral.

VOCATIONS: Various (with usage of PTO)

WARNING!
If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

This function must not be used with Neutral Indicator For PTO (Output “S”).

Figure P–20. Automatic Neutral—Single Input Switched to Ground (Wire 117)
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING! These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION L. AUTOMATIC NEUTRAL—SINGLE INPUT SWITCHED TO POWER

USES: Provides for automatic selection of NEUTRAL when PTO is operated regardless of range selected. Requires re-selecting range to shift out of NEUTRAL. Shown with range indicator output.

VARIABLES TO SPECIFY: Maximum output speed for activating this function. Range indicator = neutral.

VOCATIONS: Various (with usage of PTO)

WARNING! If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration. This function must not be used with Neutral Indicator For PTO (Output “S”).

Figure P–21. Automatic Neutral—Single Input Switched to Power (Wire 123 or 102)
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION Q. TWO-SPEED AXLE—INPUT AND OUTPUT

USES: Provides output speed interlock for axle engagement, input to ECU, and input to speedometer to adjust for axle ratio change.

VARIABLES TO SPECIFY: Output speed to activate, output speed to deactivate.

VOCATIONS: Dump truck, refuse packer, cement mixer, two-speed axle equipped vehicles.

Figure P–22. Two-Speed Axle—Input and Output
APPENDIX P—INPUT/OUTPUT FUNCTIONS

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION V. REVERSE ENABLE SWITCHED TO GROUND

USES: Provides for a separate instrument panel-mounted switch which must be pressed simultaneously with the REVERSE button to achieve Reverse.

VARIABLES TO SPECIFY: None

VOCATIONS: European transit buses and tour buses

WARNING! If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

Figure P–23. Reverse Enable Switched to Ground
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION V. REVERSE ENABLE SWITCHED TO POWER

USES: Provides for a separate instrument panel-mounted switch which must be pressed simultaneously with the REVERSE button to achieve Reverse.

VARIABLES TO SPECIFY: None

VOCATIONS: European transit buses and tour buses

WARNING!
If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

Figure P–24. Reverse Enable Switched to Power
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION W. DIRECTION CHANGE ENABLE SWITCHED TO GROUND

USES: An active input signals the TCM to permit a requested direction change shift (Neutral to Drive, Neutral to Reverse, Reverse to Drive, or Drive to Reverse). If the Direction Change Enable input is inactive and a direction change shift is requested, the TCM will inhibit the direction change shift by forcing the transmission to Neutral. The direction change inhibit remains in effect until the Direction Change Enable input becomes active AND a range (Reverse, Neutral, or Drive) is requested at the shift selector.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

WARNING! If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

This function can be provided by a J1939 message.
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION W. DIRECTION CHANGE ENABLE SWITCHED TO POWER

USES: An active input signals the TCM to permit a requested direction change shift (Neutral to Drive, Neutral to Reverse, Reverse to Drive, or Drive to Reverse). If the Direction Change Enable input is inactive and a direction change shift is requested, the TCM will inhibit the direction change shift by forcing the transmission to Neutral. The direction change inhibit remains in effect until the Direction Change Enable input becomes active AND a range (Reverse, Neutral, or Drive) is requested at the shift selector.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

WARNING!
If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

Figure P–26. Direction Change Enable Switched to Power

This function can be provided by a J1939 message.
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION Y. ANTI-LOCK BRAKE RESPONSE WITH INPUT FROM ABS CONTROLLER

USES: Signals the TCM when ABS function is active, so that lockup clutch and retarder will be disabled.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

Figure P–27. Anti-Lock Brake Response With Input From ABS Controller
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION Y. ANTI-LOCK BRAKE RESPONSE VIA J1939 COMMUNICATIONS LINK

USES: Signals the TCM when ABS function is active so that the lockup clutch and retarder will be disabled. Signals the TCM during hard braking even if ABS is not activated, so that the lockup clutch and retarder will be disabled.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

Figure P–28. Anti-Lock Brake Response Via J1939 Communications Link
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING! These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION Z. RETARDER ENABLE

USES: Provides for operator ON/OFF control of the retarder, transmission temperature indication, and brake lights during retarder operation.

USES: None

VOCATIONS: Various. This function is required for retarder-equipped transmissions.

Figure P–29. Retarder Enable
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AA. SERVICE BRAKE STATUS

USES: Indicates to the TCM whether vehicle braking is being provided by the retarder or vehicle brakes, so that the transmission controls can be adapted accordingly.

VARIABLES TO SPECIFY: None

VOCATIONS: Various. This function is required for retarder-equipped transmissions.

Figure P–30. Service Brake Status

NOTE: If vehicle is equipped with air brakes, this switch should close at 2–5 psi.
INPUT FUNCTION AF. DIFFERENTIAL CLUTCH REQUEST

USES: Provides for operator ON/OFF control of the differential locking clutch in the 3000 Product Family 7-speed transmission transfer case.

VARIABLES TO SPECIFY: None

VOCATIONS: Various. This function is required for all 3000 Product Family 7-speed transmissions and used only with this transmission.

Figure P–31. Differential Clutch Request
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AG. AUTOMATIC NEUTRAL—DUAL INPUT—PARK BRAKE ACTIVATED

USES: Provides for automatic selection of NEUTRAL and activation of fast idle when park brake is applied. Automatically re-engages transmission when park brake is released. PTO can be enabled independent of transmission range.

VARIABLES TO SPECIFY: Max output rpm to enable Neutral, max engine rpm for PTO engagement, max engine rpm for PTO operation, max output rpm for PTO engagement, max output rpm for PTO operation.

VOCATIONS: Refuse packer, recycling truck

Figure P–32. Automatic Neutral—Dual Input—Park Brake Activated

NOTE: Typical engine “Fast Idle” control system. Actual configuration may vary from that shown. Consult the engine manufacturer.

NOTE: Transmission shifts to Neutral when either rail switch or arm switch is closed (if other conditions are satisfied). Transmission shifts back to Drive if both switches open and engine speed drops below 900 rpm within 2.5 seconds of both switches closing.
INPUT FUNCTION AG. AUTOMATIC NEUTRAL—DUAL INPUT—WORK BRAKE ACTIVATED

USES: Provides for automatic selection of NEUTRAL and activation of fast idle when work brake is applied. Automatically re-engages transmission when park brake is released. PTO can be enabled independent of transmission range.

VARIABLES TO SPECIFY: Max output rpm to enable Neutral, max engine rpm for PTO engagement, max engine rpm for PTO operation, max output rpm for PTO engagement, max output rpm for PTO operation.

VOATIONS: Refuse packer, recycling truck

NOTE*: Typical engine 'Fast Idle' control system. Actual configuration may vary from that shown. Consult the engine manufacturer.

NOTE: Transmission shifts to Neutral when either rail switch or arm switch is closed (if other conditions are satisfied). Transmission shifts back to Drive if both switches open and engine speed drops below 900 rpm within 2.5 seconds of both switches closing.

Figure P–33. Automatic Neutral—Dual Input—Work Brake Activated
INPUT FUNCTION AH. KICKDOWN

USES: Provides both economy and performance shift points at full throttle. Operator changes from economy to performance by stepping through a detent at the throttle pedal.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

NOTE: “Full throttle economy shift points” position on the pedal should coincide with full stroke of the Allison throttle position sensor (if used) and/or “full fuel” setting of the engine controls. Thus, pedal movement beyond “full throttle economy shift points” must not change fuel setting of the engine or the throttle position signal to the transmission controls system.

This function can be provided by a J1939 message.
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could cause unintended selection of range or other unpredictable operation resulting in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AI. MILITARY AUXILIARY FUNCTION RANGE INHIBIT (STANDARD)

USES: Prevents inadvertent range selection when auxiliary equipment is operating.

VARIABLES TO SPECIFY: None

VOCATIONS: Military wheeled vehicles

WARNING!

If this function is turned “ON” in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be turned “OFF” in the calibration.

Figure P–35. Military Auxiliary Function Range Inhibit (Standard)
INPUT FUNCTION AJ. FOURTH LOCKUP PUMP MODE—OPERATOR AND PUMP ACTIVATED (NORTH AMERICA)

USES: Facilitates engagement of split shaft PTO and shifts transmission to fourth range lockup for driving a vehicle-mounted pump.

VARIABLES TO SPECIFY: None

VOCATIONS: Street cleaners, sewer cleaners

WARNING! If this function is turned “ON” in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be turned “OFF” in the calibration.

SYSTEM OPERATION

OPERATOR ACTION—System Response

TO ENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral.
2. APPLY PARKING BRAKE—None
3. SELECT PUMP—Turns on “Pump Mode Requested” light. Turns on input signal to TCM (wire 123) which activates pump mode. When split-shaft shifts, wire 122 is activated and “Pump Engaged” light is turned on.
4. SELECT DRIVE—Transmission shifts to fourth lockup. “OK To Pump” light is turned on.

TO DISENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral if output rpm is less than 1000.
2. SELECT ROAD MODE—PTO disengages. If output shaft rotation continues, press the “Momentary Trans. Brake” switch before selecting Road Mode. This will cause the transmission output shaft to stop if transmission is in Neutral and output shaft speed is less than 175 rpm.

Figure P–36. Fourth Lockup Pump Mode—Operator and Pump Activated (North America)
INPUT FUNCTION AJ. FOURTH LOCKUP PUMP MODE—OPERATOR ONLY ACTIVATED (NORTH AMERICA)

USES: Facilitates engagement of split shaft PTO and shifts transmission to fourth range lockup for driving a vehicle-mounted pump.

VARIABLES TO SPECIFY: None

VOCATIONS: Street cleaners, sewer cleaners

WARNING! If this function is turned “ON” in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be turned “OFF” in the calibration.

SYSTEM OPERATION

OPERATOR ACTION—System Response

TO ENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral.
2. APPLY PARKING BRAKE—None
3. SELECT PUMP—Turns on “Pump Mode Requested” light. Turns on both input signals to TCM (wires 122 and 123) which activates pump mode. When split-shaft shifts, “Pump Engaged” light is turned on.
4. SELECT DRIVE—Transmission shifts to fourth lockup. “OK To Pump” light is turned on.

TO DISENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral if output rpm is less than 1000.
2. SELECT ROAD MODE—PTO disengages. If output shaft rotation continues, press the “Momentary Trans. Brake” switch before selecting Road Mode. This will cause the transmission output shaft to stop if transmission is in Neutral and output shaft speed is less than 175 rpm.

Figure P–37. Fourth Lockup Pump Mode—Operator Only Activated (North America)
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AJ. FOURTH LOCKUP PUMP MODE—OPERATOR AND PUMP ACTIVATED (NON-NORTH AMERICA)

USES: Facilitates engagement of split shaft PTO and shifts transmission to fourth range lockup for driving a vehicle-mounted pump.

VARIABLES TO SPECIFY: None

VOCATIONS: Street cleaners, sewer cleaners

WARNING! If this function is turned “ON” in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be turned “OFF” in the calibration.

SYSTEM OPERATION
OPERATOR ACTION—System Response

TO ENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral.
2. APPLY PARKING BRAKE—None
3. SELECT PUMP—Turns on “Pump Mode Requested” light. Turns on both input signals to TCM (wires 143 and 123) which activates pump mode. When split-shaft shifts, “Pump Engaged” light is turned on.
4. SELECT DRIVE—Transmission shifts to fourth lockup. “OK To Pump” light is turned on.

TO DISENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral if output rpm is less than 1000.
2. SELECT ROAD MODE—PTO disengages. If output shaft rotation continues, press the “Momentary Trans. Brake” switch before selecting Road Mode. This will cause the transmission output shaft to stop if transmission is in Neutral and output shaft speed is less than 175 rpm.

Figure P–38. Fourth Lockup Pump Mode—Operator and Pump Activated (Non-North America)
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AJ. FOURTH LOCKUP PUMP MODE—OPERATOR ONLY ACTIVATED (NON-NORTH AMERICA)

USES: Facilitates engagement of split shaft PTO and shifts transmission to fourth range lockup for driving a vehicle-mounted pump.

VARIABLES TO SPECIFY: None

VOCATIONS: Street cleaners, sewer cleaners

WARNING! If this function is turned “ON” in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be turned “OFF” in the calibration.

SYSTEM OPERATION

OPERATOR ACTION—System Response

TO ENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral.
2. APPLY PARKING BRAKE—None
3. SELECT PUMP—Turns on “Pump Mode Requested” light. Turns on both input signals to TCM (wires 117 and 143) which activates pump mode. When split-shaft shifts, “Pump Engaged” light is turned on.
4. SELECT DRIVE—Transmission shifts to fourth lockup. “OK To Pump” light is turned on.

TO DISENGAGE:
1. SELECT NEUTRAL—Transmission shifts to Neutral if output rpm is less than 1000.
2. SELECT ROAD MODE—PTO disengages. If output shaft rotation continues, press the “Momentary Trans. Brake” switch before selecting Road Mode. This will cause the transmission output shaft to stop if transmission is in Neutral and output shaft speed is less than 175 rpm.

Figure P–39. Fourth Lockup Pump Mode—Operator Only Activated (Non-North America)
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AK. AUTOMATIC NEUTRAL—DUAL INPUT WITH SERVICE BRAKE STATUS—AUTOMATED SIDE LOADER ACTIVATED

USES: Provides for automatic selection of NEUTRAL and activation of fast idle when loading arm is activated. Automatically re-engages transmission when loading arm is retracted if service brake is depressed. Only re-engagement of forward is allowed. Reverse is not re-engaged.

VARIABLES TO SPECIFY: Max output rpm to enable Neutral, max engine rpm for PTO engagement, max engine rpm for PTO operation, max output rpm for PTO engagement, max output rpm for PTO operation.

VOCATIONS: Refuse packer, recycling truck

WARNING!

This feature is meant to be used in applications where the vehicle operator remains in the cab. If the operator leaves the vehicle, the park brake must be engaged and Neutral must be selected prior to the operator exiting the cab. In addition, vehicles using this feature must have the following Warning sticker visible in the vehicle cab: “WARNING: Set Park Brake and select Neutral before exiting cab!”

NOTE: The fast idle solenoid must be diode suppressed.

NOTE*: Typical engine “Fast Idle” control system. Actual configuration may vary from that shown. Consult the engine manufacturer.

Figure P–40. Automatic Neutral—Dual Input With Service Brake Status—Automated Side Loader Activated
INPUT FUNCTION AK. AUTOMATIC NEUTRAL—DUAL INPUT WITH SERVICE BRAKE STATUS—DASH SWITCH ACTIVATED

USES: Provides for selection of NEUTRAL and enabling fast idle through activation of a dash mounted switch. Automatically re-engages transmission when switch is opened if service brake is depressed. Only re-engagement of forward is allowed. Reverse is not re-engaged.

VARIABLES TO SPECIFY: Max output rpm to enable Neutral, max engine rpm for PTO engagement, max engine rpm for PTO operation, max output rpm for PTO engagement, max output rpm for PTO operation.

VOCATIONS: Refuse packer, recycling truck

WARNING! This feature is meant to be used in applications where the vehicle operator remains in the cab. If the operator leaves the vehicle, the park brake must be engaged and Neutral must be selected prior to the operator exiting the cab. In addition, vehicles using this feature must have the following Warning sticker visible in the vehicle cab: “WARNING: Set Park Brake and select Neutral before exiting cab!”

NOTE: The fast idle solenoid must be diode suppressed.

NOTE*: Typical engine “Fast Idle” control system. Actual configuration may vary from that shown. Consult the engine manufacturer.

Figure P–41. Automatic Neutral—Dual Input With Service Brake Status—Dash Switch Activated
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AK. AUTOMATIC NEUTRAL—DUAL INPUT WITH SERVICE BRAKE STATUS—PARK BRAKE ACTIVATED

USES: Provides for automatic selection of NEUTRAL and activation of PTO when park brake is applied. Automatically re-engages transmission when park brake is released (if service brake is depressed). Only re-engagement of forward is permitted. Reverse is not re-engaged.

VARIABLES TO SPECIFY: Max output rpm to enable Neutral, max engine rpm for PTO engagement, max engine rpm for PTO operation, max output rpm for PTO engagement, max output rpm for PTO operation.

VOCATIONS: Refuse packer, recycling truck, emergency equipment.

NOTE: This function is also available with emergency equipment calibration features.

![Diagram of Automatic Neutral—Dual Input With Service Brake Status—Park Brake Activated](image)

Figure P–42. Automatic Neutral—Dual Input With Service Brake Status—Park Brake Activated

NOTE: Typical engine “Fast Idle” control system. Actual configuration may vary from that shown. Consult the engine manufacturer.
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AK. AUTOMATIC NEUTRAL—DUAL INPUT WITH SERVICE BRAKE STATUS—WORK BRAKE ACTIVATED

USES: Provides for automatic selection of NEUTRAL and activation of PTO when work brake is applied. Automatically re-engages transmission when work brake is released (if service brake is depressed). Only re-engagement of forward is permitted. Reverse is not re-engaged.

VARIABLES TO SPECIFY: Max output rpm to enable Neutral, max engine rpm for PTO engagement, max engine rpm for PTO operation, max output rpm for PTO engagement, max output rpm for PTO operation.

VOCATIONS: Refuse packer, recycling truck

Figure P–43. Automatic Neutral—Dual Input With Service Brake Status—Work Brake Activated
INPUT FUNCTION AK. AUTO NEUTRAL—DUAL INPUT WITH SERVICE BRAKE STATUS—EMERGENCY VEHICLE OPTION

USES: Provides for automatic selection of NEUTRAL when park brake is applied. Reselection of DRIVE or REVERSE is required. The transmission does not shift out of Neutral when park brake is released, as with other variations of Function AK.

VARIABLES TO SPECIFY: Max output rpm to enable Neutral.

VOCAITIONS: Emergency vehicles

Figure P–44. Automatic Neutral—Dual Input With Service Brake Status—Emergency Vehicle Option
INPUT FUNCTIONAL. SHIFT SELECTOR TRANSITION AND SECONDARY SHIFT SCHEDULE WITHOUT AUTO NEUTRAL

USES: Provides for operator selection of dual shift selectors and shift schedules. Primary mode will always be active when shift selector 1 is selected, and secondary mode will always be active when shift selector 2 is selected.

VARIABLES TO SPECIFY: None

VOCATIONS: Dual-station refuse vehicles, crane carrier

WARNING! If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

WARNING! These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

Figure P–45. Shift Selector Transition and Secondary Shift Schedule Without Auto Neutral
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AL. SHIFT SELECTOR TRANSITION AND SECONDARY SHIFT SCHEDULE WITH AUTO NEUTRAL

USES: Provides for operator selection of dual shift selectors and shift schedules. Primary mode will always be active when shift selector 1 is selected, and secondary mode will always be active when shift selector 2 is selected.

VARIABLES TO SPECIFY: None

VOCATIONS: Dual-station refuse vehicles

WARNING! If this function is enabled in the shift calibration, the function MUST be integrated into the vehicle wiring. If the function is available in the shift calibration but will not be used in the vehicle, it MUST be disabled in the calibration.

Figure P–46. Shift Selector Transition and Secondary Shift Schedule With Auto Neutral
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AM. REFUSE PACKER STEP SWITCH

USES: Limit operation of transmission to first range and inhibit reverse with presence of personnel on rear of vehicle.

VARIABLES TO SPECIFY: None

VOCATIONS: Refuse

Figure P–47. Refuse Packer Step Switch
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION AQ. SELECTOR DISPLAY BLANKING

USES: Blanks the digital display and mode on indicator on the lever or pushbutton shift selectors.

VARIABLES TO SPECIFY: None

VOCATIONS: Military wheeled vehicles

For Shift Selector wiring requirements refer to installation drawing AS07-422 or AS07-423 in Allison 4th Generation Controls Tech Data.

Figure P–48. Selector Display Blanking
INPUT FUNCTION AS. REDUCED ENGINE LOAD AT STOP (RELS)

USES: Automatically activates Reduced Engine Load at Stop (RELS) when vehicle service brakes are applied, vehicle is stopped, and throttle is closed. RELS deactivates when the service brakes are released, or the throttle is advanced, or Drive is selected at the shift selector. If an “Automatic Neutral” input is activated, RELS will be deactivated.

VARIABLES TO SPECIFY: None

VOCATIONS: Buses, coach, and on-highway trucks. Use of this function is not permitted in refuse vehicles, concrete mixers, or emergency vehicles. This feature is also not available in applications that utilize second-range start shift calibrations.

NOTE: The vehicle interface circuit must be designed such that this function is deactivated at least 250 milliseconds before the service brakes on the drive axle are released. This may be accomplished by the following:

a) Selecting a service brake pressure switch which activates at a pressure which is near, but less than, the service brake apply pressure. Typically a 10-15 psi pressure switch.

b) If the front service brakes release before the rear service brakes, install the activation pressure switch in the front service brake circuit.

c) Place the pressure switch as near as possible to the quickest releasing side of the service brake foot pedal (usually the front brake line).

ALL ITEMS SHOWN, EXCEPT TCM, ARE CUSTOMER-FURNISHED
INPUT FUNCTION BB. RELS WITH SERVICE BRAKE STATUS

USES: Combines functions AA and As on a single wire.

VARIABLES TO SPECIFY: None

VOCATIONS: Transit bus and tour coach

WARNING!
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.
WARNING! These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

INPUT FUNCTION BD. AUTO 2–1 PRESELECT FOR 7-SPEED

USES: Military vehicles and commercial heavy equipment transporters (HET) to help prevent transmission overheating. Allows an automatic 2–1 shift in a 7-speed if conditions are conducive to successfully completing the shift.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

Figure P–51. Auto 2–1 Preselect For 7-speed
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION A. ENGINE BRAKE ENABLE

USES: Used with engine brakes to signal the ECU that the brake is active and to provide increased braking by preselecting a lower range. Also prevents engagement of engine brake with throttle > 0 or lockup OFF.

VARIABLES TO SPECIFY: Preselect range. Standard value is second range.

VOCATIONS: Various

Refer to “Inputs H and I: Engine Brake Enable and Preselect Request.” This output is inverted when used with Input H.
OUTPUT FUNCTION B. SUMP/RETARDER TEMPERATURE INDICATOR

USES: Turn on dash indicator when transmission sump or retarder-out temperature has exceeded specified limits.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

This function can be provided by a J-1939 message.
OUTPUT FUNCTION C. RANGE INDICATOR

USES: Used with auxiliary vehicle systems to permit operation only in specified transmission range(s).

VARIABLES TO SPECIFY: Range or ranges to be indicated

VOCATIONS: Various

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

This function can be provided by a J1939 message.
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION D. OUTPUT SPEED INDICATOR—A (SWITCHED TO GROUND)

USES: To signal that the transmission output shaft has exceeded a specified value.

VARIABLES TO SPECIFY: Rpm to turn output ON and to turn output OFF. The ON value must be higher than the OFF value.

VOCATIONS: Various

![Diagram of Output Speed Indicator—A (Switched to Ground)]

NOTE: If the overspeed indicator is an inductive load, it must be diode suppressed.

Figure P–54. Output Speed Indicator—A (Switched to Ground)
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION D. OUTPUT SPEED INDICATOR—A (SWITCHED TO POWER)

USES: To signal that the transmission output shaft has exceeded a specified value.

VARIABLES TO SPECIFY: Rpm to turn ON output and to turn OFF output. The ON value must be higher than the OFF value.

VOCATIONS: Various

Figure P–55. Output Speed Indicator—A (Switched to Power)
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION E. OUTPUT SPEED INDICATOR—B

USES: To signal that the transmission output shaft has exceeded a specified value.

VARIABLES TO SPECIFY: Rpm to turn ON output and to turn OFF output. The ON value must be higher than the OFF value.

VOCATIONS: Various

This function can be provided by a J1939 message.
INPUT FUNCTION G. PTO ENABLE

USES: Used with PTO Enable Input C. Permits PTO to be engaged only when engine speed and output speed are in allowable range and throttle is low. Also disengages PTO if speeds are exceeded.

VARIABLES TO SPECIFY: Minimum and maximum engine speed for engagement, maximum engine speed for allowable operation, minimum and maximum output speed for engagement, maximum output speed for allowable operation.

VOCATIONS: Various (with usage of PTO)

Refer to “Input C: PTO Enable” and “Input AG: Automatic Neutral—Dual Input.”
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION I. ENGINE OVERSPEED INDICATOR SWITCHED TO POWER

USES: To turn on dash light when engine reaches an overspeed condition.

VARIABLES TO SPECIFY: Rpm to turn ON; rpm to turn OFF.

VOCATIONS: Various

Figure P–57. Engine Overspeed Indicator Switched to Power
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION I. ENGINE OVERSPEED INDICATOR WITHOUT VIM—SWITCHED TO GROUND

USES: To turn on dash light when engine reaches an overspeed condition.

VARIABLES TO SPECIFY: Rpm to turn ON; rpm to turn OFF.

VOCATIONS: Various

Figure P–58. Engine Overspeed Indicator Without VIM—Switched to Ground
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION J. TWO SPEED AXLE ENABLE

USES: Used with Two Speed Axle Enable input to provide a speed protected engagement of low axle.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

Refer to “Input Q: Two Speed Axle Enable”.

APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION K. LOCKUP INDICATOR

USES: Turn on dash indicator when transmission lockup clutch is engaged. Used to indicate when maximum engine braking is available.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

NOTE: “Economy” legend is shown for illustrative purposes only. Actual legend in each vehicle should describe the special characteristics of the secondary mode shift calibration.

Figure P–59. Lockup Indicator
OUTPUT FUNCTION N. SECONDARY MODE INDICATOR

USES: To indicate that Secondary Mode is active.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

This function can be provided by a J1939 message.
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION N. SECONDARY MODE INDICATOR—SWITCHED TO POWER

USES: To indicate that Secondary Mode is active.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

Figure P–61. Secondary Mode Indicator—Switched to Power
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION O. SERVICE INDICATOR

USES: This function is required with “Input Function F: Dual Input Auxiliary Function Range Inhibit” to indicate that there is a problem with the vehicle wiring for the input signal. This output signal is typically used to turn on a dash-mounted light to indicate to the operator or service personnel to check for diagnostic codes stored in the ECU.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

Refer to “Input F: Dual Input Auxiliary Function Range Inhibit.”
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION Q. RETARDER INDICATOR

USES: Signals that the retarder is active. Typically used to turn on the vehicle brake lights when the retarder is in use.

VARIABLES TO SPECIFY: None

VOCATIONS: Various

This function is used in conjunction with Input Function “Z”, Retarder Enable. Refer to schematic for Input Function “Z”, noting the use of wire 125.
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could result in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION R. DIFFERENTIAL CLUTCH INDICATOR

USES: Signals the status of the differential clutch in the 3000 Product Family 7-Speed transfer case.

VARIABLES TO SPECIFY: None

VOCATIONS: Various. This function is required for all 3000 Product Family 7-Speed transmissions and used only with that model.

Refer to “Input AF: Differential Clutch Request.”
APPENDIX P—INPUT/OUTPUT FUNCTIONS

WARNING!
These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could cause unscheduled operation of the PTO or other unpredictable operation resulting in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION S. NEUTRAL INDICATOR FOR PTO AND PTO ENABLE—PACK-ON-THE-FLY OPTION

USES: Provides for fast idle operation in neutral, “pack-on-the-fly”, and PTO engagement with overspeed protection.

VARIABLES TO SPECIFY: Max engine rpm for PTO engagement, max engine rpm for PTO operation, max output rpm for PTO engagement, max output rpm for PTO operation.

VOCATIONS: Refuse packer, recycling truck.

SYSTEM OPERATION
Operator selects NEUTRAL to enable fast idle.

Transmission shifts to neutral if throttle and output speed are low.

When DRIVE is re-selected, fast idle is interrupted and transmission shifts to drive if engine speed drops below 900 rpm within approximately two seconds.

![Figure P–62. Neutral Indicator for PTO and PTO Enable—Pack-On-The-Fly Option](image-url)
WARNING!

These schematics show the intended use of the specified controls features which have been validated in the configuration shown. Any miswiring or use of these features which differs from that shown could cause unscheduled operation of the PTO or other unpredictable operation resulting in damage to equipment or property, personal injury, or loss of life. ALLISON TRANSMISSION IS NOT LIABLE FOR THE CONSEQUENCES ASSOCIATED WITH MISWIRING OR UNINTENDED USE OF THESE FEATURES.

OUTPUT FUNCTION S. NEUTRAL INDICATOR FOR PTO AND PTO ENABLE—NEUTRAL OPERATION ONLY

USES: Provides for fast idle operation in neutral, and PTO engagement with overspeed protection.

VARIABLES TO SPECIFY: Max engine rpm for PTO engagement, max engine rpm for PTO operation, max output rpm for PTO engagement, max output rpm for PTO operation.

VOCATIONS: Refuse packer, recycling truck.

SYSTEM OPERATION

Operator selects NEUTRAL to enable fast idle.

Transmission shifts to neutral if throttle and output speed are low.

When DRIVE is re-selected, fast idle is interrupted and transmission shifts to drive if engine speed drops below 900 rpm within approximately two seconds.

Figure P–63. Neutral Indicator for PTO and PTO Enable—Neutral Operation Only
APPENDIX Q—THERMISTOR TROUBLESHOOTING INFORMATION

Resistance Vs. Temperature Characteristics

Graph Q–1 is a graph of the temperature indicated by the resistance measured by the 3000 and 4000 Product Families product line sump and retarder temperature sensors. Both sensors have a negative temperature coefficient which means the indicated temperature increases as the measured resistance decreases within a range of about 200,000 Ohms down to about 50 Ohms for the sump thermistor and about 400,000 Ohms down to about 60 Ohms for the retarder thermistor.

NOTE: Look carefully at the graph. The scale for the resistance (on the left side) is not constant (linear). It is logarithmic which means it can display a great range of values within a small space. Each section of the graph is ten units, but the units vary from 1 to 100,000 Ohms. The range of resistance for the old thermistor is very small when compared with that of the new thermistors.

The following table shows the range of resistance values that correspond to either retarder or sump fluid temperature shown in one degree increments over the operating range of the thermistors.
THERMISTORS—RESISTANCE (OHMS) VS. TEMPERATURE

Degree C	Degree F	Lo Ohms	Nom Ohms	Hi Ohms	Degree C	Degree F	Lo Ohms	Nom Ohms	Hi Ohms	
-50	-58	182288	202642	226183	-49	-56.2	169859	188561	210206	
-48	-54.4	158357	175549	195459	-47	-52.6	147708	163519	181840	
-46	-50.8	137844	152390	169255	-45	-49	128702	142089	157621	
-44	-47.2	120224	132550	146860	-43	-45.4	112359	123711	136900	
-42	-43.6	105057	115517	127678	-41	-41.8	98276	107917	119134	
-40	-40	352399	402392	452385	-40	-40	95956	100865	107181	
-39	-38.2	329878	376270	422662	-39	-38.2	89769	94317	100181	
-38	-36.4	308936	352005	395074	-38	-36.4	84019	88235	93681	
-37	-34.6	289453	329454	369456	-37	-34.6	78674	82582	87642	
-36	-32.8	271318	308486	345655	-36	-32.8	73701	77326	82030	
-35	-31	254431	288981	323531	-35	-31	69073	72437	76811	
-34	-29.2	238698	270827	302956	-34	-29.2	64764	67886	71956	
-33	-27.4	224033	253923	283814	-33	-27.4	60749	63649	67497	
-32	-25.6	210358	238177	265995	-32	-25.6	57008	59702	63228	
-31	-23.8	197600	223501	249402	-31	-23.8	53520	56024	59308	
-30	-22	185693	209817	233941	-30	-22	50266	52594	55654	
-29	-20.2	174574	197053	219531	-29	-20.2	47229	49394	52247	
-28	-18.4	164188	185140	206093	-28	-18.4	44394	46408	49069	
-27	-16.6	154480	174018	193556	-27	-16.6	41746	43620	46102	
-26	-14.8	145404	163630	181856	-26	-14.8	39271	41016	43332	
-25	-13	136915	153923	170930	-25	-13	36958	38583	40745	
-24	-11.2	128971	144848	160724	-24	-11.2	34794	36308	38328	
-23	-9.4	121534.6	136360.5	151188	-23	-9.4	32770	34181	36088	
-22	-7.6	114569.9	128419.6	142269.4	-22	-7.6	30875	32190	33954	
-21	-5.8	108044.7	120987	133929.3	-21	-5.8	29101	30327	31976	
-20	-4	101928.7	114027.2	126125.7	-20	-4	27439	28582	30125	
-19	-2.2	96194	107507.5	118821	-19	-2.2	25881	26948	28391	
-18	-0.4	90814.8	101397.8	111980.7	-18	-0.4	24420	25417	26767	
-17	1.4	85767	95669.8	105572.7	-17	1.4	23051	23981	25245	
-16	3.2	81028.5	90297.8	99567.2	-16	3.2	21766	22634	23818	
-15	5	76578.5	85257.7	93937	-15	5	20660	21371	22480	
-14	6.8	72397.9	80527.1	88656.4	-14	6.8	19427	20185	21225	
APPENDIX Q—THERMISTOR TROUBLESHOOTING INFORMATION

THERMISTORS—RESISTANCE (OHMS) VS. TEMPERATURE (cont’d)

<table>
<thead>
<tr>
<th>Degree C</th>
<th>Degree F</th>
<th>Lo Ohms</th>
<th>Nom Ohms</th>
<th>Hi Ohms</th>
<th>Degree C</th>
<th>Degree F</th>
<th>Lo Ohms</th>
<th>Nom Ohms</th>
<th>Hi Ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>-13</td>
<td>8.6</td>
<td>68469</td>
<td>76085.4</td>
<td>83701.9</td>
<td>-13</td>
<td>8.6</td>
<td>18363</td>
<td>19072</td>
<td>20046</td>
</tr>
<tr>
<td>-12</td>
<td>10.4</td>
<td>64775.3</td>
<td>71913.4</td>
<td>79051.6</td>
<td>-12</td>
<td>10.4</td>
<td>17363</td>
<td>18026</td>
<td>18940</td>
</tr>
<tr>
<td>-11</td>
<td>12.2</td>
<td>61301.3</td>
<td>67993.3</td>
<td>74685.3</td>
<td>-11</td>
<td>12.2</td>
<td>16424</td>
<td>17043</td>
<td>17900</td>
</tr>
<tr>
<td>-10</td>
<td>14</td>
<td>58033</td>
<td>64308.5</td>
<td>70584</td>
<td>-10</td>
<td>14</td>
<td>15540</td>
<td>16120</td>
<td>16924</td>
</tr>
<tr>
<td>-9</td>
<td>15.8</td>
<td>54956.9</td>
<td>60843.6</td>
<td>66730.3</td>
<td>-9</td>
<td>15.8</td>
<td>14709</td>
<td>15251</td>
<td>16006</td>
</tr>
<tr>
<td>-8</td>
<td>17.6</td>
<td>52060.8</td>
<td>57584.4</td>
<td>63108</td>
<td>-8</td>
<td>17.6</td>
<td>13927</td>
<td>14434</td>
<td>15143</td>
</tr>
<tr>
<td>-7</td>
<td>19.4</td>
<td>49333.13</td>
<td>54517.51</td>
<td>59701.9</td>
<td>-7</td>
<td>19.4</td>
<td>13190</td>
<td>13666</td>
<td>14331</td>
</tr>
<tr>
<td>-6</td>
<td>21.2</td>
<td>46763.28</td>
<td>51630.64</td>
<td>56498</td>
<td>-6</td>
<td>21.2</td>
<td>12497</td>
<td>12942</td>
<td>13567</td>
</tr>
<tr>
<td>-5</td>
<td>23</td>
<td>44341.27</td>
<td>48912.25</td>
<td>53483.24</td>
<td>-5</td>
<td>23</td>
<td>11844</td>
<td>12261</td>
<td>12848</td>
</tr>
<tr>
<td>-4</td>
<td>24.8</td>
<td>42057.81</td>
<td>46351.65</td>
<td>50645.49</td>
<td>-4</td>
<td>24.8</td>
<td>11228</td>
<td>11619</td>
<td>12171</td>
</tr>
<tr>
<td>-3</td>
<td>26.6</td>
<td>39904.26</td>
<td>43938.84</td>
<td>47973.42</td>
<td>-3</td>
<td>26.6</td>
<td>10648</td>
<td>11014</td>
<td>11533</td>
</tr>
<tr>
<td>-2</td>
<td>28.4</td>
<td>37872.55</td>
<td>41664.54</td>
<td>45456.53</td>
<td>-2</td>
<td>28.4</td>
<td>10101</td>
<td>10444</td>
<td>10932</td>
</tr>
<tr>
<td>-1</td>
<td>30.2</td>
<td>35955</td>
<td>39520</td>
<td>43085</td>
<td>-1</td>
<td>30.2</td>
<td>9585</td>
<td>9906</td>
<td>10365</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>34145.1</td>
<td>37497.4</td>
<td>40850</td>
<td>0</td>
<td>32</td>
<td>9098</td>
<td>9399</td>
<td>9831</td>
</tr>
<tr>
<td>1</td>
<td>33.8</td>
<td>32430</td>
<td>35590</td>
<td>38750</td>
<td>1</td>
<td>33.8</td>
<td>8638</td>
<td>8921</td>
<td>9329</td>
</tr>
<tr>
<td>2</td>
<td>35.6</td>
<td>30810</td>
<td>33790</td>
<td>36770</td>
<td>2</td>
<td>35.6</td>
<td>8203</td>
<td>8470</td>
<td>8854</td>
</tr>
<tr>
<td>3</td>
<td>37.4</td>
<td>29282</td>
<td>32092</td>
<td>34903</td>
<td>3</td>
<td>37.4</td>
<td>7793</td>
<td>8044</td>
<td>8407</td>
</tr>
<tr>
<td>4</td>
<td>39.2</td>
<td>27838</td>
<td>30490</td>
<td>33142</td>
<td>4</td>
<td>39.2</td>
<td>7406</td>
<td>7643</td>
<td>7985</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>26474</td>
<td>28976</td>
<td>31479</td>
<td>5</td>
<td>41</td>
<td>7041</td>
<td>7263</td>
<td>7587</td>
</tr>
<tr>
<td>6</td>
<td>42.8</td>
<td>25184</td>
<td>27547</td>
<td>29910</td>
<td>6</td>
<td>42.8</td>
<td>6696</td>
<td>6905</td>
<td>7211</td>
</tr>
<tr>
<td>7</td>
<td>44.6</td>
<td>23965</td>
<td>26197</td>
<td>28428</td>
<td>7</td>
<td>44.6</td>
<td>6369</td>
<td>6567</td>
<td>6855</td>
</tr>
<tr>
<td>8</td>
<td>46.4</td>
<td>22813</td>
<td>24920</td>
<td>27028</td>
<td>8</td>
<td>46.4</td>
<td>6061</td>
<td>6247</td>
<td>6519</td>
</tr>
<tr>
<td>9</td>
<td>48.2</td>
<td>21722</td>
<td>23713</td>
<td>25704</td>
<td>9</td>
<td>48.2</td>
<td>5769</td>
<td>5944</td>
<td>6202</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>20690</td>
<td>22572</td>
<td>24454</td>
<td>10</td>
<td>50</td>
<td>5493</td>
<td>5658</td>
<td>5902</td>
</tr>
<tr>
<td>11</td>
<td>51.8</td>
<td>19712</td>
<td>21492</td>
<td>23271</td>
<td>11</td>
<td>51.8</td>
<td>5231</td>
<td>5387</td>
<td>5618</td>
</tr>
<tr>
<td>12</td>
<td>53.6</td>
<td>18787</td>
<td>20469</td>
<td>22152</td>
<td>12</td>
<td>53.6</td>
<td>4984</td>
<td>5131</td>
<td>5349</td>
</tr>
<tr>
<td>13</td>
<td>55.4</td>
<td>17910</td>
<td>19502</td>
<td>21093</td>
<td>13</td>
<td>55.4</td>
<td>4750</td>
<td>4888</td>
<td>5095</td>
</tr>
<tr>
<td>14</td>
<td>57.2</td>
<td>17079</td>
<td>18585</td>
<td>20091</td>
<td>14</td>
<td>57.2</td>
<td>4528</td>
<td>4659</td>
<td>4854</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
<td>16292</td>
<td>17717</td>
<td>19141</td>
<td>15</td>
<td>59</td>
<td>4318</td>
<td>4441</td>
<td>4626</td>
</tr>
<tr>
<td>16</td>
<td>60.8</td>
<td>15545</td>
<td>16894</td>
<td>18242</td>
<td>16</td>
<td>60.8</td>
<td>4118</td>
<td>4235</td>
<td>4410</td>
</tr>
<tr>
<td>17</td>
<td>62.6</td>
<td>14836.8</td>
<td>16113.8</td>
<td>17391</td>
<td>17</td>
<td>62.6</td>
<td>3929</td>
<td>4039</td>
<td>4205</td>
</tr>
<tr>
<td>18</td>
<td>64.4</td>
<td>14164.8</td>
<td>15374.1</td>
<td>16583.5</td>
<td>18</td>
<td>64.4</td>
<td>3750</td>
<td>3854</td>
<td>4011</td>
</tr>
<tr>
<td>19</td>
<td>66.2</td>
<td>13527</td>
<td>14672.6</td>
<td>15818.2</td>
<td>19</td>
<td>66.2</td>
<td>3580</td>
<td>3678</td>
<td>3827</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>12921.4</td>
<td>14006.9</td>
<td>15092.4</td>
<td>20</td>
<td>68</td>
<td>3418</td>
<td>3511</td>
<td>3653</td>
</tr>
<tr>
<td>21</td>
<td>69.8</td>
<td>12346.4</td>
<td>13375.1</td>
<td>14403.8</td>
<td>21</td>
<td>69.8</td>
<td>3265</td>
<td>3353</td>
<td>3487</td>
</tr>
<tr>
<td>22</td>
<td>71.6</td>
<td>11800.1</td>
<td>12775.3</td>
<td>13750.5</td>
<td>22</td>
<td>71.6</td>
<td>3120</td>
<td>3202</td>
<td>3330</td>
</tr>
<tr>
<td>23</td>
<td>73.4</td>
<td>11281</td>
<td>12205.7</td>
<td>13130.3</td>
<td>23</td>
<td>73.4</td>
<td>2981</td>
<td>3060</td>
<td>3180</td>
</tr>
<tr>
<td>24</td>
<td>75.2</td>
<td>10787.6</td>
<td>11664.6</td>
<td>12541</td>
<td>24</td>
<td>75.2</td>
<td>2850</td>
<td>2924</td>
<td>3039</td>
</tr>
</tbody>
</table>
THERMISTORS—RESISTANCE (OHMS) VS. TEMPERATURE (cont'd)

<table>
<thead>
<tr>
<th>Retarder Thermistor</th>
<th>Sump Thermistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree C</td>
<td>Degree F</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>26</td>
<td>78.8</td>
</tr>
<tr>
<td>27</td>
<td>80.6</td>
</tr>
<tr>
<td>28</td>
<td>82.4</td>
</tr>
<tr>
<td>29</td>
<td>84.2</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>31</td>
<td>87.8</td>
</tr>
<tr>
<td>32</td>
<td>89.6</td>
</tr>
<tr>
<td>33</td>
<td>91.4</td>
</tr>
<tr>
<td>34</td>
<td>93.2</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
</tr>
<tr>
<td>36</td>
<td>96.8</td>
</tr>
<tr>
<td>37</td>
<td>98.6</td>
</tr>
<tr>
<td>38</td>
<td>100.4</td>
</tr>
<tr>
<td>39</td>
<td>102.2</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
</tr>
<tr>
<td>41</td>
<td>105.8</td>
</tr>
<tr>
<td>42</td>
<td>107.6</td>
</tr>
<tr>
<td>43</td>
<td>109.4</td>
</tr>
<tr>
<td>44</td>
<td>111.2</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
</tr>
<tr>
<td>46</td>
<td>114.8</td>
</tr>
<tr>
<td>47</td>
<td>116.6</td>
</tr>
<tr>
<td>48</td>
<td>118.4</td>
</tr>
<tr>
<td>49</td>
<td>120.2</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
</tr>
<tr>
<td>51</td>
<td>123.8</td>
</tr>
<tr>
<td>52</td>
<td>125.6</td>
</tr>
<tr>
<td>53</td>
<td>127.4</td>
</tr>
<tr>
<td>54</td>
<td>129.2</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
</tr>
<tr>
<td>56</td>
<td>132.8</td>
</tr>
<tr>
<td>57</td>
<td>134.6</td>
</tr>
<tr>
<td>58</td>
<td>136.4</td>
</tr>
<tr>
<td>59</td>
<td>138.2</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>61</td>
<td>141.8</td>
</tr>
<tr>
<td>62</td>
<td>143.6</td>
</tr>
</tbody>
</table>
APPENDIX Q—THERMISTOR TROUBLESHOOTING INFORMATION

THERMISTORS—RESISTANCE (OHMS) VS. TEMPERATURE (cont'd)

| Degree C | Degree F | Lo Ohms | Nom Ohms | Hi Ohms | Degree C | Degree F | Lo Ohms | Nom Ohms | Hi Ohms |
|----------|----------|---------|----------|---------|----------|----------|---------|----------|---------|---------|
| 63 | 145.4 | 2268.2 | 2398.5 | 2528.8 | 63 | 145.4 | 588.2 | 601.2 | 624.2 |
| 64 | 147.2 | 2188.8 | 2313.4 | 2438 | 64 | 147.2 | 567.4 | 579.9 | 602.1 |
| 65 | 149 | 2112.5 | 2231.7 | 2350.8 | 65 | 149 | 547.4 | 559.4 | 580.8 |
| 66 | 150.8 | 2039.3 | 2153.3 | 2267.3 | 66 | 150.8 | 528.2 | 539.8 | 560.5 |
| 67 | 152.6 | 1969.1 | 2078.1 | 2187.1 | 67 | 152.6 | 509.8 | 520.9 | 540.9 |
| 68 | 154.4 | 1901.6 | 2005.9 | 2110.2 | 68 | 154.4 | 492.1 | 502.8 | 522.2 |
| 69 | 156.2 | 1836.8 | 1936.6 | 2036.4 | 69 | 156.2 | 475.2 | 485.4 | 504.1 |
| 70 | 158 | 1774.5 | 1870 | 1965.5 | 70 | 158 | 458.9 | 468.7 | 486.8 |
| 71 | 159.8 | 1714.6 | 1806.1 | 1897.5 | 71 | 159.8 | 443.2 | 452.7 | 470.2 |
| 72 | 161.6 | 1657.1 | 1744.6 | 1832.2 | 72 | 161.6 | 428.2 | 437.3 | 454.2 |
| 73 | 163.4 | 1601.8 | 1685.6 | 1769.4 | 73 | 163.4 | 413.7 | 422.5 | 438.9 |
| 74 | 165.2 | 1548.65 | 1628.89 | 1709.1 | 74 | 165.2 | 399.8 | 408.3 | 424.1 |
| 75 | 167 | 1497.52 | 1574.36 | 1651.21 | 75 | 167 | 386.5 | 394.6 | 410 |
| 76 | 168.8 | 1448.33 | 1521.94 | 1595.54 | 76 | 168.8 | 373.6 | 381.5 | 396.3 |
| 77 | 170.6 | 1401.01 | 1471.52 | 1542.03 | 77 | 170.6 | 361.3 | 368.9 | 383.2 |
| 78 | 172.4 | 1355.47 | 1423.03 | 1490.58 | 78 | 172.4 | 349.4 | 356.7 | 370.6 |
| 79 | 174.2 | 1311.65 | 1376.38 | 1441.11 | 79 | 174.2 | 338 | 345 | 358.5 |
| 80 | 176 | 1269 | 1331 | 1394 | 80 | 176 | 327 | 333.8 | 346.8 |
| 81 | 177.8 | 1228.3 | 1288.3 | 1348 | 81 | 177.8 | 316.4 | 322.9 | 335.6 |
| 82 | 179.6 | 1190 | 1247 | 1304 | 82 | 179.6 | 306.2 | 312.5 | 324.7 |
| 83 | 181.4 | 1152 | 1207 | 1261 | 83 | 181.4 | 296.4 | 302.5 | 314.3 |
| 84 | 183.2 | 1116 | 1168 | 1220 | 84 | 183.2 | 288.9 | 292.8 | 304.3 |
| 85 | 185 | 1081 | 1131 | 1181 | 85 | 185 | 277.8 | 283.5 | 294.6 |
| 86 | 186.8 | 1047 | 1095 | 1143 | 86 | 186.8 | 269 | 274.5 | 285.4 |
| 87 | 188.6 | 1015 | 1061 | 1107 | 87 | 188.6 | 260.5 | 265.9 | 276.5 |
| 88 | 190.4 | 983 | 1028 | 1072 | 88 | 190.4 | 253.3 | 257.6 | 268 |
| 89 | 192.2 | 953 | 996 | 1038 | 89 | 192.2 | 244.3 | 249.5 | 259.7 |
| 90 | 194 | 924 | 965 | 1005 | 90 | 194 | 236.7 | 241.8 | 251.7 |
| 91 | 195.8 | 896 | 935 | 974 | 91 | 195.8 | 229.4 | 234.4 | 244 |
| 92 | 197.6 | 869 | 906 | 944 | 92 | 197.6 | 222.3 | 227.2 | 236.6 |
| 93 | 199.4 | 843 | 879 | 915 | 93 | 199.4 | 215.5 | 220.2 | 229.5 |
| 94 | 201.2 | 817 | 852 | 886 | 94 | 201.2 | 208.9 | 213.5 | 222.6 |
| 95 | 203 | 793 | 826 | 859 | 95 | 203 | 202.5 | 207.1 | 215.9 |
| 96 | 204.8 | 769 | 801 | 833 | 96 | 204.8 | 196.4 | 200.9 | 209.5 |
| 97 | 206.6 | 747 | 777 | 808 | 97 | 206.6 | 190.5 | 194.8 | 203.3 |
| 98 | 208.4 | 725 | 754 | 784 | 98 | 208.4 | 184.8 | 189 | 197.3 |
| 99 | 210.2 | 703.6 | 731.8 | 760 | 99 | 210.2 | 179.2 | 183.4 | 191.5 |
| 100 | 212 | 683.2 | 710.2 | 737.3 | 100 | 212 | 173.9 | 178 | 185.9 |
APPENDIX Q—THERMISTOR TROUBLESHOOTING INFORMATION

THERMISTORS—RESISTANCE (OHMS) VS. TEMPERATURE (cont’d)

<table>
<thead>
<tr>
<th>Retarder Thermistor</th>
<th>Sump Thermistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree C</td>
<td>Degree F</td>
</tr>
<tr>
<td>101</td>
<td>213.8</td>
</tr>
<tr>
<td>102</td>
<td>215.6</td>
</tr>
<tr>
<td>103</td>
<td>217.4</td>
</tr>
<tr>
<td>104</td>
<td>219.2</td>
</tr>
<tr>
<td>105</td>
<td>221</td>
</tr>
<tr>
<td>106</td>
<td>222.8</td>
</tr>
<tr>
<td>107</td>
<td>224.6</td>
</tr>
<tr>
<td>108</td>
<td>226.4</td>
</tr>
<tr>
<td>109</td>
<td>228.2</td>
</tr>
<tr>
<td>110</td>
<td>230</td>
</tr>
<tr>
<td>111</td>
<td>231.8</td>
</tr>
<tr>
<td>112</td>
<td>233.6</td>
</tr>
<tr>
<td>113</td>
<td>235.4</td>
</tr>
<tr>
<td>114</td>
<td>237.2</td>
</tr>
<tr>
<td>115</td>
<td>239</td>
</tr>
<tr>
<td>116</td>
<td>240.8</td>
</tr>
<tr>
<td>117</td>
<td>242.6</td>
</tr>
<tr>
<td>118</td>
<td>244.4</td>
</tr>
<tr>
<td>119</td>
<td>246.2</td>
</tr>
<tr>
<td>120</td>
<td>248</td>
</tr>
<tr>
<td>121</td>
<td>249.8</td>
</tr>
<tr>
<td>122</td>
<td>251.6</td>
</tr>
<tr>
<td>123</td>
<td>253.4</td>
</tr>
<tr>
<td>124</td>
<td>255.2</td>
</tr>
<tr>
<td>125</td>
<td>257</td>
</tr>
<tr>
<td>126</td>
<td>258.8</td>
</tr>
<tr>
<td>127</td>
<td>260.6</td>
</tr>
<tr>
<td>128</td>
<td>262.4</td>
</tr>
<tr>
<td>129</td>
<td>264.2</td>
</tr>
<tr>
<td>130</td>
<td>266</td>
</tr>
<tr>
<td>131</td>
<td>267.8</td>
</tr>
<tr>
<td>132</td>
<td>269.6</td>
</tr>
<tr>
<td>133</td>
<td>271.4</td>
</tr>
<tr>
<td>134</td>
<td>273.2</td>
</tr>
<tr>
<td>135</td>
<td>275</td>
</tr>
<tr>
<td>136</td>
<td>276.8</td>
</tr>
<tr>
<td>137</td>
<td>278.6</td>
</tr>
<tr>
<td>138</td>
<td>280.4</td>
</tr>
<tr>
<td>Degree C</td>
<td>Degree F</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>139</td>
<td>282.2</td>
</tr>
<tr>
<td>140</td>
<td>284</td>
</tr>
<tr>
<td>141</td>
<td>285.8</td>
</tr>
<tr>
<td>142</td>
<td>287.6</td>
</tr>
<tr>
<td>143</td>
<td>289.4</td>
</tr>
<tr>
<td>144</td>
<td>291.2</td>
</tr>
<tr>
<td>145</td>
<td>293</td>
</tr>
<tr>
<td>146</td>
<td>294.8</td>
</tr>
<tr>
<td>147</td>
<td>296.6</td>
</tr>
<tr>
<td>148</td>
<td>298.4</td>
</tr>
<tr>
<td>149</td>
<td>300.2</td>
</tr>
<tr>
<td>150</td>
<td>302</td>
</tr>
<tr>
<td>151</td>
<td>303.8</td>
</tr>
<tr>
<td>152</td>
<td>305.6</td>
</tr>
<tr>
<td>153</td>
<td>307.4</td>
</tr>
<tr>
<td>154</td>
<td>309.2</td>
</tr>
<tr>
<td>155</td>
<td>311</td>
</tr>
<tr>
<td>156</td>
<td>312.8</td>
</tr>
<tr>
<td>157</td>
<td>314.6</td>
</tr>
<tr>
<td>158</td>
<td>316.4</td>
</tr>
<tr>
<td>159</td>
<td>318.2</td>
</tr>
<tr>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>161</td>
<td>321.8</td>
</tr>
<tr>
<td>162</td>
<td>323.6</td>
</tr>
<tr>
<td>163</td>
<td>325.4</td>
</tr>
<tr>
<td>164</td>
<td>327.2</td>
</tr>
<tr>
<td>165</td>
<td>329</td>
</tr>
<tr>
<td>166</td>
<td>330.8</td>
</tr>
<tr>
<td>167</td>
<td>332.6</td>
</tr>
<tr>
<td>168</td>
<td>334.4</td>
</tr>
<tr>
<td>169</td>
<td>336.2</td>
</tr>
<tr>
<td>170</td>
<td>338</td>
</tr>
<tr>
<td>171</td>
<td>339.8</td>
</tr>
<tr>
<td>172</td>
<td>341.6</td>
</tr>
<tr>
<td>173</td>
<td>343.4</td>
</tr>
<tr>
<td>174</td>
<td>345.2</td>
</tr>
<tr>
<td>175</td>
<td>347</td>
</tr>
<tr>
<td>176</td>
<td>348.8</td>
</tr>
</tbody>
</table>
APPENDIX Q—THERMISTOR TROUBLESHOOTING INFORMATION

THERMISTORS—RESISTANCE (OHMS) VS. TEMPERATURE (cont’d)

<table>
<thead>
<tr>
<th>Degree C</th>
<th>Degree F</th>
<th>Lo Ohms</th>
<th>Nom Ohms</th>
<th>Hi Ohms</th>
<th>Degree C</th>
<th>Degree F</th>
<th>Lo Ohms</th>
<th>Nom Ohms</th>
<th>Hi Ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>177</td>
<td>350.6</td>
<td>101</td>
<td>104</td>
<td>107</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>178</td>
<td>352.4</td>
<td>99</td>
<td>102</td>
<td>105</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>179</td>
<td>354.2</td>
<td>97</td>
<td>100</td>
<td>103</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>180</td>
<td>356</td>
<td>95</td>
<td>98</td>
<td>101</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>181</td>
<td>357.8</td>
<td>93.4</td>
<td>96.1</td>
<td>99</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>182</td>
<td>359.6</td>
<td>91.5</td>
<td>94.1</td>
<td>96.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>183</td>
<td>361.4</td>
<td>89.6</td>
<td>92.3</td>
<td>94.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>184</td>
<td>363.2</td>
<td>87.8</td>
<td>90.4</td>
<td>93</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>185</td>
<td>365</td>
<td>86.1</td>
<td>88.6</td>
<td>91.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>186</td>
<td>366.8</td>
<td>84.3</td>
<td>86.8</td>
<td>89.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>187</td>
<td>368.6</td>
<td>82.7</td>
<td>85.1</td>
<td>87.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>188</td>
<td>370.4</td>
<td>81</td>
<td>83.4</td>
<td>85.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>189</td>
<td>372.2</td>
<td>79.4</td>
<td>81.8</td>
<td>84.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>190</td>
<td>374</td>
<td>77.8</td>
<td>80.2</td>
<td>82.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>191</td>
<td>375.8</td>
<td>76.3</td>
<td>78.7</td>
<td>81</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>192</td>
<td>377.6</td>
<td>74.8</td>
<td>77.1</td>
<td>79.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>193</td>
<td>379.4</td>
<td>73.4</td>
<td>75.6</td>
<td>77.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>194</td>
<td>381.2</td>
<td>71.9</td>
<td>74.2</td>
<td>76.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>195</td>
<td>383</td>
<td>70.5</td>
<td>72.8</td>
<td>75</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>196</td>
<td>384.8</td>
<td>69.2</td>
<td>71.4</td>
<td>73.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>197</td>
<td>386.6</td>
<td>67.84</td>
<td>70.02</td>
<td>72.20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>198</td>
<td>388.4</td>
<td>66.54</td>
<td>68.70</td>
<td>70.86</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>199</td>
<td>390.2</td>
<td>65.27</td>
<td>67.41</td>
<td>69.54</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>200</td>
<td>392</td>
<td>64.03</td>
<td>66.14</td>
<td>68.25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>201</td>
<td>393.8</td>
<td>62.82</td>
<td>64.91</td>
<td>65.99</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>202</td>
<td>395.6</td>
<td>61.64</td>
<td>63.70</td>
<td>65.76</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>203</td>
<td>397.4</td>
<td>60.00</td>
<td>63.00</td>
<td>65.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>204</td>
<td>399.2</td>
<td>59.30</td>
<td>61.40</td>
<td>63.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
This Appendix is an overview of how Allison Transmission implements the J1939-based functions.

The Controller Area Network (CAN) defined by SAE J1939 enables the integration of various vehicle components into an overall vehicle system by providing a standard way of exchanging information between these modules in the vehicle. Use of a J1939 network, or datalink, for on-vehicle communication can greatly reduce the amount of wiring in a vehicle, and give many different components and subsystems access to a wider range of information.

Allison uses the J1939 communication link for vehicle operation controls, powertrain interaction, and conveying vehicle management information (Figure R–1).*

Details are found in the Vehicle Function Requirements section of the Datalink Communications Tech Data.

* NOTE: On Allison 4th Generation Controls Systems, off-board communications are only enabled via J1939.
Wiring

Allison recommends implementing J1939 network wiring per SAE J1939-11, which specifies 120 Ohm impedance twisted pair cable with shielding (Figure R–2). The shielding greatly reduces the communication link’s susceptibility to induced electromagnetic interference.

The drain wire connects to a “shield” pin on each controller on the network. These “shield pins” are not the same as ground connections; there is circuitry between the shield pin and the controller’s ground connection.

In addition to the above connections, the shield drain wire should break out of the backbone in one location, preferably as close to the center as possible, and connect directly to the battery ground terminal or grounding bus bar.

Allison Transmission does not recommend the use of unshielded cabling specified in J1939-15 (often referred to as “J1939 Lite”). The lack of shielding makes the J1939 network more susceptible to electromagnetic interference, which can be extremely difficult to diagnose and correct. Many vehicle OEMs, however, opt to use J1939-15 cable due to its lower cost and greater flexibility. J1939-11 (shielded) and J1939-15 (unshielded) cable should never be mixed in a vehicle installation.

Cable suppliers include:

- Belden Wire and Cable Co.
- BICC Brand-Rex Co.
- Champlain Cable Co.
- Raychem.

J1939 networks are laid out in a linear fashion, consisting of a central “backbone” with “stubs” branching off to individual controllers or “nodes” (refer to Figure R–3).

Regardless of the cable used, two 120 Ohm termination resistors are required, one at each end of the backbone cable (refer to Figure R–4). These resistors may be built into a receptacle connector or plug connector that contains a blue wedge lock.
A Termination Resistor is a 120Ω resistor found at each end of the backbone. Two are required, and they typically use Blue Wedge Locks.

Since some vehicle OEMs use receptacles on their backbones, a plug version is also available.

Figure R–4. Termination Resistors Requirement on J1939-11 Backbone

Typically, all connectors on the backbone and stubs are of the “plug” type. However, “receptacle” connectors may be used in some installations. Stubs and nodes use orange or green wedge locks.

The backbone may be no longer than 40 meters in length. A stub includes the length of wiring on the node, and the length from the backbone to the node must be one meter or less.

Figure R–3 shows a typical J1939-11 network cable configuration including controllers, or “nodes”. The connector for the Allison controller is a 3-way connector configured as follows (refer to Figure R–5):

- Terminal A = CAN High
- Terminal B = CAN Low
- Terminal C = CAN Shield.

Typically CAN High is a yellow wire and CAN Low is a green wire.
APPENDIX R—SAE J1939 COMMUNICATION LINK

A 9-way, in-cab, diagnostic bulkhead housing, if used, will be configured as follows (refer to Figure R–6):

- A = Ground
- B = +12 volts (unswitched)
- C = High (Yellow)
- D = Low (Green)
- E = Shield
- F = J1587 + (typically blue)
- G = J1587 – (typically white)
- H and J = For OEM use.

Troubleshooting

In terms of J1939 communication, Allison Transmission is only responsible for the Allison TCM hardware, software, and calibration. Wiring issues belong solely to the vehicle manufacturer. The responsibility for putting valid data on the datalink, and properly using the data obtained from the datalink, belongs to each component supplier with a device connected to the datalink.

CAN vs. Traditional Wiring

A key difference between traditional analog wires and CAN datalinks is the detection of signal corruption between the communicating devices.

An analog electrical signal generated properly by a sender may be corrupted on the way to the receiver by such problems as electrical noise or shorts-to-ground or power. This corruption may or may not affect the value received.

CAN communication links are much more robust, as wiring integrity cannot change the values being sent. Wiring faults can only prevent messages from arriving at their destination. The CAN hardware makes sure that a message is accepted only and exactly as the sending node generated the message. CAN chips reject messages affected by electrical noise or wire faults.

When communication is possible and there are no wiring issues present, CAN makes certain that information is received exactly as it is sent. However, CAN cannot detect when a device is putting out bad information or when a device misuses information pulled off of the network. For example, if the ABS system sends information stating that it is active, whether it actually is or not, the TCM will still react as if the ABS is active.
The CAN Community

A unique aspect of the J1939 datalink is that the TCM can be one of many controllers on the network. As such, intended communication with certain devices (such as the engine) may be impacted by other devices on the datalink, such as an instrument cluster or body controller.

The manufacturer of each individual controller on the network is responsible to make sure that correct information is placed on the network at all times. This work should be covered during the development of any device that will connect to the J1939 network. As such, troubleshooting here will deal only in the context of wiring and calibration issues, which are most often encountered in the field.

Datalink Diagnostic Tools

Digital Multi-Meters

A digital volt/ohmmeter (DVOM) can be used to detect datalink activity. However, datalink voltages change extremely fast, causing meter float. DVOMs are best suited to testing for proper termination resistance, or the presence of open- or short-circuits in the network wiring.

Temporary Backbone

The first step in any datalink-related problem is to determine who ‘owns’ the problem. Connecting a temporary backbone between the engine and transmission can be used to identify the source of the problem, eliminating many of the unknowns such as vehicle wiring, interference from another controller, etc. If the problem goes away while using the temporary backbone and returns when the OEM backbone is reconnected, it is not an Allison Transmission issue; there is a problem with the vehicle’s OEM wiring.

Wiring and Connector Failures

Wiring and connectors are the number one cause of problems in the field. Opens, shorts, and CAN high being connected to CAN low are among the most frequently encountered issues.

Termination Resistors

A J1939 network requires a 120 Ohm termination resistor at each end of the backbone (Figure R–3). With all controllers powered off and both termination resistors in place, an ohmmeter should read 60 Ohms across terminals A and B of the 3-way connector (Figure R–5), or Terminals C and D of the 9-way connector (Figure R–6). The test can be performed with controllers connected to the backbone because the impedance at the controllers is much higher than 60 Ohms and therefore does not affect the reading.

A measurement of 120 Ohms typically indicates that either one of the two termination resistors is not in place, or there is an open somewhere in the backbone of the network.

A measurement of 0 (zero) Ohms indicates that there is a short between the CAN high and CAN low wires of the network. The short may be in the backbone itself, or in one of the stubs connecting it to a controller.

Open Circuits

Open circuits in the CAN High (A) or CAN Low (B) sides of the backbone or in any of the stubs can affect one or more controllers on the network. While an open circuit in a stub will have the most impact on the controller attached to that stub, other devices on the network who normally receive information or expect a response from that controller will be impacted as well.

When there are multiple nodes attached to the network, and their connectors are accessible, an open circuit can be tracked by moving down the backbone from stub to stub looking at the datalink information present at each connector. When there is a difference in the amount of datalink traffic between two connection points, there is
likely an open circuit somewhere on the stubs or the backbone between the two connection points. A DVOM may be used to detect activity.

Short Circuits

A short circuit can occur in the J1939 backbone or stubs between:

- CAN high and CAN low
- CAN high or CAN low and battery voltage
- CAN high or CAN low and ground

When a short circuit is present, typically multiple controllers on the network indicate an error of some sort, due to the loss of all communication between any of the nodes. For example, datalink-based instrument clusters will not function properly. Short circuits typically fall into one of the following categories:

- Mechanical failure—Insulation cut or scraped through, wires pinched, etc.
- Incorrectly wired pins on one or more of the controllers
- Missing connector seal(s), allowing water intrusion.

Inducted Noise

Inducted noise tends to be a much greater issue when J1939-15 (unshielded) cable is used. While the following routing tips are a good idea for shielded networks, they are critical when unshielded cable is used. J1939-15 cable routing must avoid the following by a minimum of 3 to 4 inches of physical separation:

- Solenoids
- Alternator
- Flasher modules
- High output CB radio
- Starter motor
- Relays
- Any high-current switching device.

Inducted noise is typically “event driven”, or associated with an activity that involves operation of a high-current load near the network wiring. For example, “everytime I use my left turn signal, the ABS lamp acts up...”

To find noise sources, monitor datalink traffic under the following conditions:

- With the key switch on: Operate every input the driver has access to, such as the CB, blower motors, fans, air conditioning, flashers, turn signals, lights, horn, brakes, etc.
- With the engine running: Exercise every function on the vehicle as is possible, such as engaging the engine fan, turning on the air conditioning compressor, operating the dump bed, etc.

If errors or pauses in datalink traffic are noted during any specific activity, investigate the network wiring near the associated component(s).

Calibrations

After wiring, calibrations are the number two cause of problems in the field. Inappropriate calibration changes in the field can affect the operation of the Allison transmission, or the entire vehicle.

If a particular transmission or vehicle function worked prior to a calibration update of one of the controllers on the J1939 datalink, but does not function properly *afterwards*, it is likely that a customer-programmable value was changed on one or more controllers during the update. The same situation can exist for software upgrades, as well.
In either event, the cause can be narrowed down by reloading the previous software and/or calibration and determining if the issue goes away.

From an Allison perspective, there are two common causes of miscalibration:

- An internal “auto-detect” process was completed by the TCM before all of the appropriate controllers on the vehicle were connected to the J1939 datalink. In this case, Allison DOC™ For PC–Service Tool can be used to reset the auto-detection process.
- A calibration was constructed with an incorrect datalink package as specified in the Production Calibration Configuration System (PCCS). In this case, a new calibration with the correct package will have to be made. Table R–1 illustrates Allison J1939 broadcast and receive parameters versus PCCS datalink package.

Outside of the Allison TCM programming, engine TCM programming can have the greatest affect on transmission operation. Electronic engines typically have many “customer programmable” items that can affect transmission operation, such as:

- Transmission type set incorrectly
- Incompatible engine governor selected
- Engine brake (compression or exhaust) options set incorrectly
- J1939 communication not activated.

Tables R–1 through R–4, on the following pages, provide an overview of J1939 messages and parameters sent and received by Allison 4th Generation Controller System. Support varies versus the datalink package in PCCS. Refer to Datalink Tech Data for details.

Table R–1. J1939 Broadcasts—TCM

<table>
<thead>
<tr>
<th>PGN</th>
<th>SA</th>
<th>Rate</th>
<th>Byte</th>
<th>Bits</th>
<th>Parameters Sent</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>TSC1</td>
<td>03</td>
<td>12.5 MS¹</td>
<td>12.5 MS¹</td>
<td>(See Datalink Tech Data for Details)</td>
<td></td>
</tr>
<tr>
<td>59904</td>
<td>PGN Request</td>
<td>03</td>
<td>As Req’d</td>
<td>1–3</td>
<td>PGN of Requested Message</td>
<td>ON</td>
</tr>
<tr>
<td>61184</td>
<td>Proprietary A</td>
<td>03</td>
<td>100 ms</td>
<td>1–8</td>
<td>Proprietary Shift Selector Information</td>
<td>ON</td>
</tr>
<tr>
<td>61440</td>
<td>ERC1</td>
<td>16</td>
<td>100 ms</td>
<td>1</td>
<td>4–1 Retarder Torque Mode</td>
<td>ON 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Actual Retarder—Percent Torque</td>
<td>ON 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Intended Retarder—Percent Torque</td>
<td>ON 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Engine Coolant Load Increase</td>
<td>ON 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>SA of Controlling Device for Retarder Control</td>
<td>ON 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>Retarder Selection, Non-Engine</td>
<td>ON 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Actual Max. Available Retarder—Percent Torque</td>
<td>ON 3</td>
</tr>
<tr>
<td>61442</td>
<td>ETC1</td>
<td>03</td>
<td>12.5 MS¹</td>
<td>1</td>
<td>6,5 Shift in Progress</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,3</td>
<td>Torque Converter Lockup Engaged</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,1</td>
<td>Driveline Engaged</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3</td>
<td>Transmission Output Shaft Speed</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>4,3 Progressive Shift Disable</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,7</td>
<td>Transmission Input Shaft Speed</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>8– SA of Controlling Device For Transmission Control</td>
<td>ON</td>
</tr>
</tbody>
</table>
APPENDIX R—SAE J1939 COMMUNICATION LINK

<table>
<thead>
<tr>
<th>PGN</th>
<th>SA</th>
<th>Rate</th>
<th>Byte</th>
<th>Bits</th>
<th>Parameters Sent</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>61445 ETC2</td>
<td>03</td>
<td>100 ms</td>
<td>1</td>
<td>—</td>
<td>Transmission Selected Gear (range commanded)</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,3</td>
<td>—</td>
<td>Transmission Actual Gear Ratio</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>—</td>
<td>Current range (AT range attained)</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td>—</td>
<td>Transmission Request Range (range selected)</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7,8</td>
<td>—</td>
<td>Transmission Current Range (range attained)</td>
<td>ON</td>
</tr>
<tr>
<td>61452 ETC8</td>
<td>03</td>
<td>Varies²</td>
<td>1,2</td>
<td>—</td>
<td>Transmission Torque Converter Ratio</td>
<td>ON</td>
</tr>
<tr>
<td>65098 ETC7</td>
<td>03</td>
<td>100 ms</td>
<td>1</td>
<td>8,7</td>
<td>Trans. Requests Range Display Flash State</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6,5</td>
<td>—</td>
<td>Trans. Requests Range Display Blank State</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>8,7</td>
<td>Shift Inhibit Indicator</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6,5</td>
<td>—</td>
<td>Transmission Engine Crank Enable</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,3</td>
<td>—</td>
<td>Active Shift Console Indicator</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>8,7</td>
<td>Transmission Mode 1 Indicator</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6,5</td>
<td>—</td>
<td>Transmission Mode 2 Indicator</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,1</td>
<td>—</td>
<td>Transmission Mode 4 Indicator</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8,7</td>
<td>—</td>
<td>Transmission Request Gear Feedback</td>
<td>ON</td>
</tr>
<tr>
<td>65099 TCFG2</td>
<td>03</td>
<td>Varies</td>
<td>1,2</td>
<td>—</td>
<td>Transmission Torque Limit</td>
<td>ON</td>
</tr>
<tr>
<td>65226 DM1</td>
<td>03 or 16</td>
<td>1000 ms when active</td>
<td>1</td>
<td>4,3</td>
<td>Amber Warning Light Status</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>—</td>
<td>Suspect Parameter Number</td>
<td>ON</td>
</tr>
<tr>
<td>65242 SOFT</td>
<td>03</td>
<td>Request</td>
<td>1</td>
<td>—</td>
<td>Number of Software Identification Fields</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2–N</td>
<td>—</td>
<td>Software Identification</td>
<td>ON</td>
</tr>
<tr>
<td>65249 RCFG</td>
<td>16</td>
<td>At power up, on request, and on 10% map change</td>
<td>1</td>
<td>8–5</td>
<td>Retarder Location</td>
<td>ON⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4–1</td>
<td>Retarder Type</td>
<td>ON⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Retarder Control Method</td>
<td>ON⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Torque and Speed Map (See text for details)</td>
<td>ON⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,18</td>
<td>Reference Retarder Torque</td>
<td>ON⁵</td>
</tr>
<tr>
<td>65250 TCFG</td>
<td>03</td>
<td>Request</td>
<td>1</td>
<td>—</td>
<td>Number of Reverse Ratios</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>—</td>
<td>Number of Forward Ratios</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>—</td>
<td>Transmission Gear Ratio</td>
<td>ON</td>
</tr>
<tr>
<td>65259 CI</td>
<td>03</td>
<td>Request</td>
<td>1–5</td>
<td>—</td>
<td>Make</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>—</td>
<td>Model</td>
<td>ON</td>
</tr>
<tr>
<td>65272 TF</td>
<td>03</td>
<td>Request</td>
<td>5,6</td>
<td>—</td>
<td>Transmission Oil Temperature</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>—</td>
<td>Transmission Oil Level High/Low</td>
<td>ON⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>8–5</td>
<td>Transmission Oil Level Measurement Status</td>
<td>ON⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>4–1</td>
<td>Transmission Oil Level Countdown Timer</td>
<td>ON⁵</td>
</tr>
<tr>
<td>65275 RF</td>
<td>16</td>
<td>1000 ms</td>
<td>2</td>
<td>—</td>
<td>Hydraulic Retarder Oil Temperature</td>
<td>ON⁵</td>
</tr>
</tbody>
</table>
Table R–2. J1939 Reception—TCM

<table>
<thead>
<tr>
<th>PGN</th>
<th>Rate</th>
<th>Byte</th>
<th>Bits</th>
<th>Parameters Sent</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000 TSC1(to DA16)</td>
<td>50 ms</td>
<td>3</td>
<td>—</td>
<td>Transmission Requested Gear</td>
<td>05, 06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>8,7</td>
<td>Transmission Mode 4</td>
<td>05, 06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,3</td>
<td>Transmission Mode 2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>8,7</td>
<td>Selector Display Mode Switch</td>
<td>05, 06</td>
</tr>
<tr>
<td>61440 ERC1</td>
<td>100 ms</td>
<td>2</td>
<td>—</td>
<td>Actual Retarder—Percent Torque</td>
<td>15, 41, 00, 11, 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>6,5</td>
<td>Retarder Enable—Brake Assist Switch</td>
<td>15, 41, 33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>—</td>
<td>Retarder Selection, Non-Engine</td>
<td>33</td>
</tr>
<tr>
<td>61441 EBC1</td>
<td>100 ms</td>
<td>1</td>
<td>6,5</td>
<td>Anti-lock (ABS) Active</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,1</td>
<td>ASR Engine Control Active</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Engine Retarder Selection</td>
<td>33, 00</td>
</tr>
<tr>
<td>61444 EEC1</td>
<td>Varies With Engine Speed</td>
<td>1</td>
<td>4-1</td>
<td>Engine/Retarder Torque Mode</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>—</td>
<td>Driver’s Demand Engine—Percent Torque</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>Actual Engine—Percent Torque</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>—</td>
<td>SA of Controlling Device For Engine Control</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>—</td>
<td>Engine Demand—Percent Torque</td>
<td>00</td>
</tr>
<tr>
<td>61443 EEC2</td>
<td>50 ms</td>
<td>1</td>
<td>6,5</td>
<td>Road Speed Limit Status</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,3</td>
<td>AL Kickdown Switch</td>
<td>00, 33, 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>—</td>
<td>Accelerator Pedal (AP) Position</td>
<td>00, 33, 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>Percent Load at Current Speed</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1,2</td>
<td>Vehicle Acceleration Rate Limit Status</td>
<td>00</td>
</tr>
<tr>
<td>65214 EEC4</td>
<td>Request</td>
<td>1,2</td>
<td>—</td>
<td>Rated Power</td>
<td>00</td>
</tr>
<tr>
<td>65247 EEC3</td>
<td>250 ms</td>
<td>1</td>
<td>—</td>
<td>Nominal Friction—Percent Torque</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>—</td>
<td>Est. Engine Parasitic Losses—Percent Torque</td>
<td>00</td>
</tr>
<tr>
<td>65249 RCFG</td>
<td>Request</td>
<td>17, 18</td>
<td>—</td>
<td>Reference Retarder Torque</td>
<td>15, 41, 33</td>
</tr>
<tr>
<td>65251 ECFG</td>
<td>5000 ms and on request</td>
<td>20, 21</td>
<td>—</td>
<td>Reference Engine Torque</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31, 32</td>
<td>—</td>
<td>Engine Inertia</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33, 34</td>
<td>—</td>
<td>Engine Default Torque Limit</td>
<td>00</td>
</tr>
<tr>
<td>65259 C1</td>
<td>Request</td>
<td>1–5</td>
<td>—</td>
<td>Make</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>⑩</td>
<td>Model</td>
<td>00</td>
</tr>
<tr>
<td>65262 ET</td>
<td>1 S</td>
<td>1</td>
<td>—</td>
<td>Engine Coolant Temperature</td>
<td>00</td>
</tr>
<tr>
<td>65265 CCVS</td>
<td>100 ms</td>
<td>2, 3</td>
<td>—</td>
<td>Wheel-Based Vehicle Speed</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>6, 5</td>
<td>Brake Switch</td>
<td>00, 33, 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>—</td>
<td>Cruise Control Set Speed</td>
<td>00, 33, 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>8–6</td>
<td>Cruise Control State</td>
<td>00, 33, 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5–1</td>
<td>PTO State</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX R—SAE J1939 COMMUNICATION LINK

Table R–3. J1939 Broadcasts—Allison Shift Selector

<table>
<thead>
<tr>
<th>PGN</th>
<th>SA</th>
<th>Rate</th>
<th>Byte</th>
<th>Bits</th>
<th>Parameters Sent</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>00256 TC1</td>
<td>05 06</td>
<td>50 ms</td>
<td>3</td>
<td>—</td>
<td>Transmission Requested Gear</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,7</td>
<td>Transmission Mode 4</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>Selector Display Mode Switch</td>
<td>ON</td>
</tr>
<tr>
<td>60928 Address Claimed</td>
<td>05 06</td>
<td>As Req’d</td>
<td></td>
<td></td>
<td>See Allison 4th Generation Control Datalink Tech Data for details</td>
<td>ON</td>
</tr>
<tr>
<td>652421 Soft</td>
<td>05 06</td>
<td>Request</td>
<td>1</td>
<td>—</td>
<td>Number of Software Identification Fields</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2–N</td>
<td>Software Identification</td>
<td>ON</td>
</tr>
</tbody>
</table>

Table R–4. J1939 Reception—Allison Shift Selector

<table>
<thead>
<tr>
<th>PGN</th>
<th>Rate</th>
<th>Byte</th>
<th>Bits</th>
<th>Parameters Sent</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>59504 PGN Request</td>
<td>Varies</td>
<td>1–3</td>
<td>—</td>
<td>PGN of Requested Message</td>
<td>03</td>
</tr>
<tr>
<td>61184 Proprietary A</td>
<td>100 ms</td>
<td>1–8</td>
<td>—</td>
<td>Proprietary Shift Selector Information</td>
<td>03</td>
</tr>
<tr>
<td>65098 ETC7</td>
<td>100 ms</td>
<td>4,3</td>
<td></td>
<td>Active Shift Console Indicator</td>
<td>03</td>
</tr>
<tr>
<td>65098 ETC7</td>
<td>100 ms</td>
<td>2,1</td>
<td></td>
<td>Transmission Mode 4 Indicator</td>
<td>03</td>
</tr>
</tbody>
</table>

Footnotes:

1. The TCM does not support SAE-specified broadcast rate of 10 ms.
2. 25 ms when torque converter active, 100 ms when torque converter is in lockup. TCM does not support SAE-specified broadcast rate of 20 ms.
3. Only broadcast in applications where the presence of an Allison driveline retarder has been auto-detected or forced ‘ON’ via calibration.
4. Only broadcast in applications where the presence of an Allison oil level sensor has been auto-detected or forced ‘ON’ via calibration.
5. Of the listed acceptable source addresses, the TCM locks onto the ‘most preferred’ source, as determined by auto-detect logic.
6. This parameter is calibration dependent and may not be present on the Datalink.
7. TCM supports reception from all acceptable source addresses, not just one.
8. TCM can support reception from more than one acceptable source address in a given installation.